SNS COLLEGE OF TENHNOLOGY

(AN AUTONOMOUS INSTITUTION)

UNIT-III - COMPLEX VARIABLES

1. If $f(z)$ is an analytic function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\mathbf{f}(\mathbf{z})|^{\mathbf{2}}=\mathbf{4}\left|\mathbf{f}^{\prime}(\mathbf{z})\right|^{\mathbf{2}}$
2. Determine the analytic function whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$
3. Find the analytic function $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ given $V=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$
4. Show that the function $U=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate.
5. Find the analytic function whose imaginary part is $V=e^{2 x}(y \cos 2 y+x \sin 2 y)$
6. Prove that the function $V=e^{-x}(x \cos y+y \sin y)$ is harmonic and determine the corresponding analytic function $\mathrm{f}(\mathrm{z})$
7. If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic, find $\mathrm{f}(\mathrm{z})$ given that $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$
8. If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic, find $\mathrm{f}(\mathrm{z})$ given that $u+v=e^{x}(\cos y+\sin y)$
9. Construct the analytic function $u+$ iv given that $2 u+v=e^{x}(\cos y-\sin y)$
10. Find the image of the circle $|z|=2$ under the transformation $\mathrm{w}=3 \mathrm{z}$
11. Find the image of $x=1$ under the transformation of $w=\frac{1}{z}$
12. Under the transformation $w=\frac{1}{z}$, find the image of $|z-2 i|=2$
13. Find the bilinear transformation that maps $\mathbf{0 , 1}, \infty$ of the z-plane into $-5,-1,3$ of the wPlane. What are the invariant points in this transformation?
14. Find the bilinear transformation which maps $\infty, i, 0$ onto $0, i, \infty$
15. Find the bilinear transformation which maps the points $\mathrm{z}=-1,0,1$ into the points

$$
\mathrm{W}=0, \mathrm{i}, 3 \mathrm{i} .
$$

16. If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{i}$ is analytic, find $\mathrm{f}(\mathrm{z})$ given that $u-v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$
17. What will be the image of a circle passing through the origin in the XY plane under the transformation $w=\frac{1}{z}$?
