

POLYMERS

Polymers are <u>macromolecules</u> (giant molecules of higher molecular weight) formed by the repeated linking of large number of small molecules called monomers.

Example: Polyethylene is a polymer formed by the repeated linking of large number of ethylene molecule.

 $nCH_2=CH_2 \longrightarrow (CH_2-CH_2)_n$

Ethylene (monomer)

Polyethylene (polymer)

MONOMER

Monomer is a micro molecule (small molecule) which combines with each other to form a polymer.

Examples:

S.No.	Monomer	Repeating unit in the polymer
1	$CH_2=CH_2$	$-CH_2 - CH_2 -$
	Ethylene	Polyethylene
2	CH ₂ =CH	-CH ₂ -CH-
	l	
	CH3	CH3
	Propylene	Polyethylene
3	CH ₂ =CH	-CH ₂ -CH-
	Cl	Cl
	Vinyl Chloride	Polyvinyl Chloride (PVC)
4	CH ₂ =CH	-CH ₂ -CH-
	CN	CN
	Acrylonitrile	Polyacrylonitrile (PAN)
5	CH ₂ =CH	-CH ₂ -CH-
	C_6H_5	C_6H_5
	Styrene	Polystyrene

NOMENCLATURE OF POLYMERS

1. Homo polymer :

> If the polymer chain contains same type of monomer, it is "Homo polymer".

Example : PVC structure: A – A – A- A- A- A-A

2. Hetero polymer :

> If the polymer chain contains different type of monomer, it is "Hetero polymer".

Example : Nylon A-B- A-A-A-B-A

3. Homo chain polymer :

If the main polymer chain is made up of a same species of atoms, it is called Homochain polymer.

-2-2-2-2-2-2-2-2-2-

4. Hetero chain polymer :

If the main polymer chain is made up of a different type of atoms, it is called hetero chain polymer.

-C-C-O-C-C-C-C-C-

CLASSIFICATION OF POLYMERS

Polymers are mainly classified into two types, based on the source and application.

Based on the 'source', polymers are further classified into three types.

- > They are,
- 1. Natural polymers
- 2. Synthetic polymers and
- 3. Semi synthetic polymers

1. Natural Polymers :

- > These are are isolated from natural materials like plants and animals
- Example: Cellulose, RNA, DNA, proteins (polyamide), rubber, wool and starch, etc.,

2. Synthetic polymers :

- > These are synthesized from low molecular weight compounds or materials.
- **Example:** Polyethylene, PVC, polystyrene, terylene, silicones, etc.,

3. Semi – synthetic polymers :

- > These are the derivatives of natural polymers.
- Example: Cellulose acetate (Rayon), Cellulose nitrate (Gun cotton), Ethyl cellulose, etc.,
- Based on chemical composition (natural and synthetic) polymers are further classified into two major categories.
- ➤ They are,
 - i) Organic polymers

ii) Inorganic polymers

i) Organic polymers

- If the polymer backbone chain is essentially made of carbon atoms, it is termed an organic polymer.
- These polymers are containing hydrogen, oxygen, nitrogen and sulphur atoms, attached to the side valences of the carbon atoms

Example:Natural organic polymers – Cellulose, RNA, DNA, proteins, etc.,Synthetic organic polymers – Polyethylene, PVC, polystyrene, etc.,

ii) Inorganic polymers

- If molecules of polymers contain no carbon atom in their backbone, such polymers are inorganic polymers.
- This type of polymer chain is composed of different atoms joined by chemical bonds.

Example:

- Natural inorganic polymers Rubber, clay silicates, etc.
- Synthetic inorganic polymers Glass, silicones, etc.

Based on applications, polymers are broadly divided into three main categories.

- 1. Plastics (Resins)
- 2. Fibres (Rayon, terylene) and
- 3. Elastomers (Rubber)
- 1. Plastics :
 - Plastics are high molecular weight organic materials which can be moulded or formed into stable shapes by the application of heat and pressure.
 - > All the synthetic polymers are plastics.
- 2. Fibres
 - When a polymer can be converted into long filament like material, it is called fibre.
 - **Example:** Rayon and terylene.

3. Elastomers

> Polymers exhibiting good strength and elongation are called elastomers.

Example: Rubber (Natural rubber, synthetic rubber, etc.,)

PLASTICS

Plastics are high molecular weight organic materials, that can be moulded into any desired shape by the application of heat and pressure in the presence of a catalyst.

Advantages of plastics

- ➤ Light in weight.
- > Possess low melting point.
- > Easily moulded and have excellent finishing.
- > Possess very good strength and toughness.
- > Possess good shock absorption capacity.
- > Corrosion resistant and chemically inert.
- They have low co-efficient of thermal expansion and possess good thermal and electrical property.
- > Very good water-resistant and possess good adhesiveness.

Disadvantages of plastics

- Softness.
- > Embrittlement at low temperature.
- > Deformation under load.
- > Low heat-resistant and poor ductility.
- ➢ High combustibility.
- > Degrade upon exposure to heat and uv-radiation.
- Non bio-degradable.

CLASSIFICATION OF PLASTICS

- 1. Based on usage
- 2. Based on structure

1. Classification of plastics based on usage

(i) General purpose plastics

- > General purpose plastics have low to medium mechanical properties.
- > They are used for manufacture of commodity items.

> They account for 80-85% of the total polymer production.

Properties of general purpose plastics

- > low use temperature therefore cannot be used at high temperature
- Iow abrasion resistance and poor dimensional stability
- They are mostly crystalline with low glass transition temperature (T_g) (or) they are glossy (or) amorphous polymer

2. Engineering plastics

- > Engineering materials are a group materials obtained from high polymer resin
- They are mainly used to replace conventional material like metal, wood, glass and ceramics.
- Not only engineering plastics can replace metals but they can also be used along with metals.