
19CST102 & Object Oriented Programming

P.Poonkodi, AP/CSE Page 1

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

 COIMBATORE – 35

DEPARTMENT OF COMPUTER SIENCE AND

ENGINEERING

UNIT IV

MULTITHREADING IN JAVA

Thread Synchronization

Thread synchronization
Synchronization in Java is the capability to control the access of multiple threads to any shared

resource.

Java Synchronization is better option where we want to allow only one thread to access the

shared resource.

Why use Synchronization?
The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

Types of Synchronization
There are two types of synchronization

1. Process Synchronization

2. Thread Synchronization

Thread Synchronization
There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

1. Synchronized method.

2. Synchronized block.

19CST102 & Object Oriented Programming

P.Poonkodi, AP/CSE Page 2

3. Static synchronization.

2. Cooperation (Inter-thread communication in java)

Mutual Exclusive
Mutual Exclusive helps keep threads from interfering with one another while sharing data. It can

be achieved by using the following three ways:

1. By Using Synchronized Method

2. By Using Synchronized Block

3. By Using Static Synchronization

Concept of Lock in Java
Synchronization is built around an internal entity known as the lock or monitor. Every object has

a lock associated with it. By convention, a thread that needs consistent access to an object's fields

has to acquire the object's lock before accessing them, and then release the lock when it's done

with them.

From Java 5 the package java.util.concurrent.locks contains several lock implementations.

Understanding the problem without Synchronization
In this example, there is no synchronization, so output is inconsistent. Let's see the example:

class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

19CST102 & Object Oriented Programming

P.Poonkodi, AP/CSE Page 3

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

	Thread synchronization
	Why use Synchronization?
	Types of Synchronization
	Thread Synchronization
	Mutual Exclusive
	Concept of Lock in Java
	Understanding the problem without Synchronization

