Prefix, Postfix, Infix
Notation =

— —

’ STr‘uc'rur'e -DEVI G AP/CSE

Infix N‘raTion

<=Toadd A, B, we write

A+B -
<= To multiply A, B, we write
A*B
g@The operators (‘+' and "*') go.in

. between the operands (‘A" and "B’)
. <= This is "Infix" notation.

. S
L e—

Prefix Notation

<=Instead of saying "A plus B", we
could say "add A,B " and write™
+AB
«="Multiply A,B" would be written
5% < b ,
- = This is Prefix notation.

Postfix Notation

<=Another alternative is to put the
operators after the operands’% in
AB+

and
ABX*
. = This is Postfix notation.

Pre A ln B Post

-
<= The terms infix, prefix, and postfix
s tell us whether the operators go
5 between, before, or after the
operands.

= =S QP_GV’_ m@ (e} 0)a 523

—

Lt
~ /DSA/ Unit-II / Linear Dat s o

Parentheses

<=Evaluate 2+3*5.
<=+ First: -
(2+3)*5 = 5*5 = 25
g@* First:

2+(3*H) = 2+15 =17
@Inflx notation requires Parentheses.

What about refix Notation?

<w=+2*3b=
=+2*35 -
=+215=17

g@*+235=

=%*+235

=*55 =25

_' <=No parentheses needed

! =55*=25
. <=No parentheses needed here either!
— _— ——— e —

Conclusion:

<=Infix is the only notation that
requires parentheses in order Yo
change the order in which the
g operations are done.

Fully Parenthesized Expression

<=A FPE has exactly one set of
Parentheses enclosing each op&rator
and its operands.
<=Which is fully parenthesized?
5 (A+B)*C
¥ ((A+B)*C)
((A+B)*(C))

- — — _— e .

-~ 9/5/20e3 Department of CSE/ 19ITTI02
: ' /DSA/ Unit-IT/ Linear Data =

I

Infix to Prefix Conversion

Move each operator to the left of its
operands & remove the parentfeses:

((A+B)*(C+D))

I

Infix to Prefix Conversion

Move each operator to the left of its
operands & remove the parentfeses:

(+AB*(C+D))

=
LA
ﬁ:-)
: -

I

Infix to Prefix Conversion

Move each operator to the left of its

operands & remove the parentfieses:
*+*AB(C+D)

(T FITUTIONS

WWW.5NSgroups.com

Infix to Pre

fix Conversion

Move each operator to the left of its

operands & remove the parentfeses:
*+AB+C D

5 Order of operands does not changel!

Infix to osTfix

((CA i) Coe ((D+E)@)

5 AB+C*DE+F/-
<=Operand order does not change!
- <=Operators are in order of evaluation!

Yo ~ -
— T 11
L s e
bal

m’rer lri‘rh
FPE Infix To Postfix

<= Assumptions:

1. Space delimited list of token®
represents a FPE infix expression
2. Operands are single characters.
5 3. Operators +,-*,/

> Boll
LSTFITU IO S
WWW.SNSgroups.com

FPE Infix To Postfix

<=Initialize a Stack for operators,
output list -
<=5plit the input into a list of tokens.
<=for each token (left to right):
if itis opemnd append to output
if itis "(": push onto Stack
if itis)": pop & append till "(°

/5/20 epar‘ ment o 10
~ /DSA/ Unit-IT / Linear Data

......

FPE Infix to Postfix
i((A+B) (C-E))/(F+€))

<=»stack: <empty>
<=output: []

......

FPE Infix to Postfix
((A+B)*(C-E))/(F+6))

-

<=stack: (
<=output: []

......

FPE Infix to Postfix
(A+B)*(C-E))/(F+6))

-

<mstack: ((
<=output: []

......

FPE Infix to Postfix
A+B)*(C-E))/(F+6G))

-

<mstack: (((
<=output: []

......

FPE Infix to Postfix
+B)*(C-E))/(F+6))

<=stack: (((
<=output: [A]

......

FPE Infix to Postfix
B)*(C-E))/(F+6)) -

<=stack: (((+
<=output: [A]

......

FPE Infix to Postfix
)*(C-E))/(F+6G)) -

<=stack: (((+
<=output: [A B]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
*(C-E))/(F+6)) -

<=stack: ((
«<=output: [A B +]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
(C-E))/(F+6)) -

<=stack: ((*
«<=output: [A B +]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
C-tE))/(F+6))
A -
<wstack: ((* (
<=output: [A B +]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
-E))/(F+6))
A -
<=stack: ((* (
«<=output: [AB+C]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
E))/(F+6G))
A -
<=stack: ((* (-
«<=output: [AB+C]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix
))/(F+6G))
A o
<=stack: ((* (-
<=output: [AB+CE]

......

FPE Infix to Postfix

)/ (F+6)) .

<=stack: ((*
<=output: [AB+CE -]

......

FPE Infix to Postfix
/(F+G)) -
<=stack: (

<=output: [AB+CE-*]

......

FPE Infix to Postfix

(F+6)) .

<=stack: (/
<=output: [AB+CE-*]

FPE Infix to Postfix
F+G)) -

A
<=stack: (/ (
<=output: [AB+CE-*]

......

FPE Infix to Postfix

+6)) .

A
<=stack: (/ (
<=output: [AB+CE-*F]

......

FPE Infix to Postfix
G))

<=stack: (/ (+
<=output: [AB+CE-*F]

......

FPE Infix to Postfix
))

<=stack: (/ (+
<=output: [AB+CE-*FG]

FPE Infix to Postfix

<=stack: (/
<=output: [AB+CE-*FG+]

(T FITUTIONS

......

> R ———————————
L WWW.SNSgroups.com
A =
-3 = —_
: o >
Pl L - — —

FPE Infix to Postfix

A -
<=stack: <empty>
<=output: [AB+CE-*FG+/]

(T FITUTIONS
WWW.SNSgroups.com

<= Too many parentheses. |
=Establish precedence rules: ™
My Dear Aunt Sally
«<=We can alter the previous program to
5 use the precedence rules.

> Boll
LSTFITU IO S

L TIAOL 05 1T i i——==2

}

@llnma ize a Stack for pem’rors ou‘rpu’r
ISt
<=Split the input into a list of tokens.
<=for each token (left to right):

if itis oper'and append to outp uty,

if itis "(": push onto Stack

if itis)" pop & append till *(’
5 if itin "+-*/"

while peek has precedence » it:
pop & append
push onto Stack
pop and append the rest of the Stack.
Ry —————— e —— ———

-~ 2/2/2025 f"-"-r-":'.{._-.n_;{. ePar' men of CS€ ' -1 :—;-.:—- e
> ; "DSA / Unit - I/ Lir ear Data ;

stack. For instance, the postfix expression

is evaluated as follows:

The frst four symbols are placed on the stack. The resulting stack is

Mext, a "+ is read, so 3 and 2 are popped from the stack, and their sum, 3, is pushed.

Mext, B is pushed.

Mow a "# is seen, so B and 5 are popped, and 5 & 8 = 40 is pushed.

two numbers (symbols) that are popped from the stack, and the result is pushed onto the

G523 4+ B+43 4%

topOfStack —»

[= ¥ U5 R Y

topOfStack — 5
5
&
opOfStack —» B
5
5
&

topOfSiack —

ENT

Mext, a "+ is seen, so0 40 and 5 are popped, and 5 + 40 = 45 is pushed.

topOfStack — 45
3]
Mow, 3 is pushed.

topOfStack — 3
45
f

Mext, ‘4" pops 3 and 45 and pushes 45 4 3 = 48
topOfStack — 43
3]

Finally, a '#' is seen and 48 and 6 are popped; the result, 6 48 = 288, is pushed.

topOfStack

%

2EE

WWW.SNsgroups.com

vy w4 S
Retaiss i e pasder) =

[[WY
TUTIONS
WWW.SNsgroups.com

Then + is read and pushed onto the stack. Mext b is read and passed through to the output.
The state of afairs at this junciure is as follows:

A ah

Stack Output

The next symbol read is a + We pop and output * and then push +. Then we read and
output .

+
{
+ |ahc*+dE*F
Stack Output
MNow we read a), so the stack is emptied back to the (. We output a +.
+ labc*+de*f+ |
Stack Cutput
Wi read a * next; it is pushed onto the stack. Then g is read and output.
*
+ abc*+de*f+g |
Stack Output
The input is now empty, so we pop and cutput symbols from the stack until it is empty:
labc*+de*f+g*+
Stack Output
As before, this conversion requires only O(W) time and works in one pass through

Mext, a * is read. The top entry on the operator stack has lower precedence than *, so
nothing is output and * is put on the stack. Mext, ¢ is read and output. Thus far, we have

*
+ | abc
Stack Output

The next symbol is a +. Checking the stack, we find that we will pop a * and place it on
the output; pop the other +, which is not of lower but equal priornity, on the stack; and then
push the +.

+ [abc*+
Stack Output

The next symbol read is a (. Being of highest precedence, this is placed on the stack. Then
d is read and output.

(
+ |aJ:| c*+d
Stack Output

Wi continue by reading a *. Since open parentheses do not get removed cxcept when a

the input. We can add subtraction and division to this repertoire by assigning subtraction
closed parenthesis is being processed, there is no output. Mext, e is read and output.

and addition equal priority and multiplication and division equal priority. A subtle point
is that the expression a - b - ¢ will be converted to @ b - c - and not a b ¢ - -. Our

* algorithm does the right thing, because these operators associate from left to right. This

is not necessarily the case in general, since exponentiation associates right to left: 22 =

+ abc*+de 28 — 756, not 47 = 64. We leave a5 an exercise the problem of adding exponentiation to
Stack Output

the repertoire of operators.

