SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

VQAR -VERBAL QUANTITATIVE APTITUDE REASONING-II II YEAR/ IV SEMESTER

UNIT 1-QUANTITATIVE ABILITY III

TOPIC 7: TIME AND WORK

TIME AND WORK

TIME AND WORK

1. Work from Days:

If A can do a piece of work in n days, then A's 1 day's work $=\frac{1}{n}$.
2. Days from Work:

If A's 1 day's work $=\frac{1}{n}$, then A can finish the work in n days.
3. Ratio:

If A is thrice as good a workman as B , then:
Ratio of work done by A and $\mathrm{B}=3: 1$.
Ratio of times taken by A and B to finish a work $=1: 3$.

TIME AND WORK

1. A can do a work in 15 days and B in 20 days. If they work on it together for 4 days, then the fraction of the work that is left is :

> Explanation:
> A's 1 day's work $=\frac{1}{15}$;
> B's 1 day's work $=\frac{1}{20}$;
> $(\mathrm{A}+\mathrm{B})$'s 1 day's work $=\left(\frac{1}{15}+\frac{1}{20}\right)=\frac{7}{60}$.
> $(\mathrm{A}+\mathrm{B})$'s 4 day's work $=\left(\frac{7}{60} \times 4\right)=\frac{7}{15}$.
> Therefore, Remaining work $=\left(1-\frac{7}{15}\right)=\frac{8}{15}$.

TIME AND WORK

2.A can lay railway track between two given stations in 16 days and B can do the same job in 12 days. With help of C, they did the job in 4 days only. Then, C alone can do the job in:

```
Explanation:
(A+B+C)'s 1 day's work = \frac{1}{4}
A's 1 day's work = \frac{1}{16}
B's 1 day's work= \frac{1}{12}
\thereforeC's 1 day's work = \frac{1}{4}-(\frac{1}{16}+\frac{1}{12})=(\frac{1}{4}-\frac{7}{48})=\frac{5}{48}.
So,C alone can do the work in }\frac{48}{5}=9\frac{3}{5}\mathrm{ days.
```


TIME AND WORK

4. A is thrice as good as workman as B and therefore is able to finish a job in 60 days less than B. Working together, they can do it in:

Explanation:

Ratio of times taken by A and $\mathrm{B}=1: 3$
The time difference is $(3-1) 2$ days while B take 3 days and A takes 1 day If difference of time is 2 days, B takes 3 days.
If difference of time is 60 days, B takes $\left(\frac{3}{2} \times 60\right)=90$ days.
So, A takes 30 days to do the work
A's 1 day's work $=\frac{1}{30}$
B's 1 day's work $=\frac{1}{90}$
$(A+B)$'s 1 day's work $=\left(\frac{1}{30}+\frac{1}{90}\right)=\frac{4}{90}=\frac{2}{45}$
\therefore A and B together can do the work in $\frac{45}{2}=22 \frac{1}{2}$ days.

TIME AND WORK

5. A alone can do a piece of work in 6 days and B alone in 8 days. A and B undertook to do it for Rs. 3200. With the help of C, they completed the work in 3 days. How much is to be paid to C ?

Explanation:
C's 1 day's work $=\frac{1}{3}-\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{1}{3}-\frac{7}{24}=\frac{1}{24}$.
A's wages: B 's wages: C's wages $=\frac{1}{6}: \frac{1}{8}: \frac{1}{24}=4: 3: 1$.
\therefore C's share (for 3 days) $=$ Rs. $\left(3 \times \frac{1}{24} \times 3200\right)=$ Rs. 400 .

TIME AND WORK

6. If 6 men and 8 boys can do a piece of work in 10 days while 26 men and 48 boys can do the same in 2 days, the time taken by 15 men and 20 boys in doing the same type of work will be:

Explanation:

Let 1 man's 1 day's work $=x$ and 1 boy's 1 day's work $=y$.
Then, $6 x+8 y=\frac{1}{10}$ and $26 x+48 y=\frac{1}{2}$.
Solving these two equations, we get : $x=\frac{1}{100}$ and $y=\frac{1}{200}$.
$\left(15\right.$ men +20 boy)'s 1 day's work $=\left(\frac{15}{100}+\frac{20}{200}\right)=\frac{1}{4}$
$\therefore 15$ men and 20 boys can do the work in 4 days.

TIME AND WORK

7. A can do a piece of work in 4 hours; B and C together can do it in 3 hours, while A and C together can do it in 2 hours. How long will B alone take to do it?

Explanation:
A's 1 hour's work $=\frac{1}{4}$;
$(B+C)$'s 1 hour's work $=\frac{1}{3}$
$(A+C)$'s 1 hour's work $=\frac{1}{2}$
$(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s 1 hour's work $=\left(\frac{1}{4}+\frac{1}{3}\right)=\frac{7}{12}$.
B's 1 hour's work $=\left(\frac{7}{12}-\frac{1}{2}\right)=\frac{1}{12}$.
\therefore B alone will take 12 hours to do the work.

TIME AND WORK

8. A can do a certain work in the same time in which B and C together can do it. If A and B together could do it in 10 days and C alone in 50 days, then B alone could do it in:
$(A+B)^{\prime} s 1$ day's work $=\frac{1}{10}$
C's 1 day's work $=\frac{1}{50}$
$(A+B+C)$'s 1 day's work $=\left(\frac{1}{10}+\frac{1}{50}\right)=\frac{6}{50}=\frac{3}{25}$.
A's 1 day's work $=(B+C)$'s 1 day's work (ii)
From (ii) and (ii), we get: $2 \times$ (A's 1 day's work) $=\frac{3}{25}$
\Rightarrow A's 1 day's work $=\frac{3}{50}$.
\therefore B's 1 day's work $\left(\frac{1}{10}-\frac{3}{50}\right)=\frac{2}{50}=\frac{1}{25}$
So, B alone could do the work in 25 days.

TIME AND WORK

9. P can complete a work in 12 days working 8 hours a day. Q can complete the same work in 8 days working 10 hours a day. If both P and Q work together, working 8 hours a day, in how many days can they complete the work?

Explanation:

P can complete the work in (12 $\times 8$) hrs. $=96 \mathrm{hrs}$.
Q can complete the work in $(8 \times 10) \mathrm{hrs} .=80 \mathrm{hrs}$.
\therefore P's1 hour's work $=\frac{1}{96}$ and Q's 1 hour's work $=\frac{1}{80}$.
$(P+Q)$'s 1 hour's work $=\left(\frac{1}{96}+\frac{1}{80}\right)=\frac{11}{480}$.
So, both P and Q will finish the work in $\left(\frac{480}{11}\right) \mathrm{hrs}$.
\therefore Number of days of 8 hours each $=\left(\frac{480}{11} \times \frac{1}{8}\right)=\frac{60}{11}$ days $=5 \frac{5}{11}$ days.

TIME AND WORK

10.Ravi and Kumar are working on an assignment. Ravi takes 6 hours to type 32 pages on a computer, while Kumar takes 5 hours to type 40 pages. How much time will they take, working together on two different computers to type an assignment of 110 pages?

Explanation:

Number of pages typed by Ravi in 1 hour $=\frac{32}{6}=\frac{16}{3}$.
Number of pages typed by Kumar in 1 hour $=\frac{40}{5}=8$.
Number of pages typed by both in 1 hour $=\left(\frac{16}{3}+8\right)=\frac{40}{3}$.
\therefore Time taken by both to type 110 pages $=\left(110 \times \frac{3}{40}\right)$ hours
$=8 \frac{1}{4}$ hours (or) 8 hours 15 minutes

TIME AND WORK

12. A and B can do a piece of work in 30 days, while B and C can do the same work in 24 days and C and A in 20 days. They all work together for 10 days when B and C leave. How many days more will A take to finish the work?
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})$'s 1 day's work $=\left(\frac{1}{30}+\frac{1}{24}+\frac{1}{20}\right)=\frac{15}{120}=\frac{1}{8}$.
Therefore, $(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s 1 day's work $=\frac{1}{2 \times 8}=\frac{1}{16}$.
Work done by A, B, C in 10 days $=\frac{10}{16}=\frac{5}{8}$.
Remaining work $=\left(1-\frac{5}{8}\right)=\frac{3}{8}$.
A's 1 day's work $=\left(\frac{1}{16}-\frac{1}{24}\right)=\frac{1}{48}$.
Now, $\frac{1}{48}$ work is done by A in 1 day.
So, $\frac{3}{8}$ work will be done by A in $\left(48 \times \frac{3}{8}\right)=18$ days.

TIME AND WORK

11. Sakshi can do a piece of work in 20 days. Tanya is 25% more efficient than Sakshi. The number of days taken by Tanya to do the same piece of work is:

Explanation:
Ratio of times taken by Sakshi and Tanya $=125: 100=5: 4$.
Suppose Tanya takes x days to do the work.
$5: 4:: 20: x \Rightarrow x=\left(\frac{4 \times 20}{5}\right)$
$\Rightarrow x=16$ days.
Hence, Tanya takes 16 days to complete the work.

