

Unit- V

pH, Buffers and Isotonic solutions

Sorenson's pH scale:

pH refers to potential of hydrogen ions concentration. Sorenson's has defined pH of a solution as the logarithm of the reciprocal of the hydrogen ions or hydronium ions concentration $[H_3O^+]$.

Mathematically:

$pH = log 1/ [H_3O^+]$		(1	L))
------------------------	--	----	----	---

The above equation can be rearranged as

 $pH = \log 1 - \log [H_3O^+] -$ (2)

 $=> pH= - \log [H_3O^+]$

(or)

pH= $-\log [H^+]$ {as the value of log 1 is Zero}-----(3)

Hence pH can also defined as the negative logarithm of hydrogen ion or hydronium ions concentration. The concentration of $[H_3O^+]$ is expressed in molarity, mol/L, etc.

In pure water $[H^+] = 1.0 \times 10^{-7}$

So pH of neutral (pure) water is $-\log (10^{-7}) = 7$.

Acidic solution:

• The solutions having $[H^+]$ value greater than 10^{-7} are called acidic solution and the solutions having $[H^+]$ value less than 10^{-7} are called basic solution.

SNSCPHS/ B.Pharm/ III Sem/ Sridevi Murugesan/ Physical Pharmaceutics I | Unit - V

Hence pH value of all acidic solutions are less than 7 and pH value of all basic solutions are greater than 7.

Sorenson developed a scale based on the pH value and different concentration of H_3O^+ in a solution which is called Sorenson's pH scale.

✤ The magnitude of the hydrogen ion is represented by means of the normality factor with regard to hydrogen ion, and this factor is written in the form of a negative power of 10.

Sorenson employ the name 'hydrogen ion exponent' and the symbol pH for the numerical value of this power.

Concentration of Hydrogen ions compared to distilled water Examples						
10,000,000	pH 0 Battery acid					
1,000,000	рН 1	Hydrochloric acid				
100,000	рH 2	Lemon juice, vinegar				
10,000	рН З	Grapefruit, soft drink				
1,000	рН 4	Tomato juice, acid rain				
100	pH 5	Black coffee				
10	рН 6	Urine, saliva				
1	pH 7	"Pure" water				
1/10	рН 8	Sea water				
1/100	рН 9	Baking soda,				
1/1,000	pH 10	Great Salt Lake				
1/10,000	pH 11	Ammonia solution				
1/100,000	pH 12	Soapy water				
1/1,000,000	pH 13	Bleach				
1/10,000,000	pH 14	Liquid drain cleaner				

Sorenson's scale (Table-1) assigns a pH of 0 to 14, with 0 being the most acidic, 14 being the most basic, and 7 being neutral (neither acidic nor basic).

The pH scale works in powers of ten, so each jump in number is a multiple of ten in concentration. For example a pH of 1 is 10 times more acidic than pH 2.

SNSCPHS/ B.Pharm/ III Sem/ Sridevi Murugesan/ Physical Pharmaceutics I | Unit - V 2

The value 7 at which the hydrogen and hydroxyl ion concentrations are * about equal at room temperature is referred to as the neutral point, or neutrality.

* The neutralpH at 0°C is 7.47, and at 100°C it is 6.15.

Table-1: The pH scale and corresponding hydrogen and hydroxyl ion
concentrations

рН	[H ₃ O ⁺] (moles/liter)	[OH ⁻¹] (moles/liter)	
0	100	10-14	-
1	10-1	10-13	Acidic
2	10-2	10-12	<i>T</i> teruie
3	10-3	10-11	
4	10-4	10-10	
5	10-5	10 ⁻⁹	Neutral
6	10-6	10-8	
7	10-7	10-7	
8	10-8	10-6	Basic
9	10-9	10-5	
10	10-10	10-4	
11	10-11	10-3	
12	10-12	10-2	
13	10-13	10-1	
14	10-14	100	

SNSCPHS/ B.Pharm/ III Sem/ Sridevi Murugesan/ Physical Pharmaceutics I | Unit - V 3

The generalisations reported above regarding the acidity, neutrality and basicity hold good only when,

- \checkmark Solvent is water
- ✓ Temperature is 25°C
- \checkmark No other factors present that cause deviations.

Applications:

The pH of the solutions must be controlled in pharmacy particularly in formulations of eye drops, ear drops, injections and liquid orals for the following reasons.

* Enhancing solubility and stability:

The pH of the pharmaceutical preparations should be adjusted so as to make the API soluble and remain physically stable in the formulation.

***** *Improving purity:*

The purity of the protein can be determined as the amphoteric compounds are least soluble at their isoelectric points.

* Absorption of drugs:

The drug molecules are absorbed differently from various parts of the GIT as the later differs in their pH.

* Optimising biological activity:

Enzymes have maximum activity at a definite pH value.

***** Comforting the body:

The pH of the formulations that are administered to different tissues of the body should be optimum to avoid irritation (eyes), haemolysis (blood) or burning sensation (abraded surface).

***** Storage of products:

Special type of glass is used in case the glass container imparts alkalinity and alters the pH of the contents.

The pH indicators:

The pH indicator is a weak acid or weak base that exists in tautomeric form that readily interconvert. It is a solution when added to test solution produces a colour change, which helps in determining the pH of the test solution. The colour of any indicator depends on the pH of the solution (Table-2).

Example: Phenolpthalein, methyl red, Thymol blue etc.

Universal indicator:

Universal indicator is defined as a mixture of several indicators, which gives different color shades as the pH of the solution varies, in a particular pH range.

Table-2: Some indicators and change of colours with pH.

Name of the	pH range	Colour change	Universal
indicator			indicator
Methyl yellow	3.1-4.4	Blue-yellow	
Methyl red	4.2-6.2	Red-yellow	Mixture of all
Bromothymol Blue	6.0-7.6	Yellow-blue	indicator range of
Thymol blue	8.0-9.6	Yellow-blue	pHis 1 to 11.