

BIOLOGICAL OXIDATION

Bioenergetics: It describes the transfer and utilization of energy in biological system.

All the catabolic products of the food components \rightarrow (CHO, fats and proteins) are **metabolized** into principle sources of **reducing equivalents** (such as **NAD & FAD**). These NAD and FAD have a high transfer [redox] potentials.

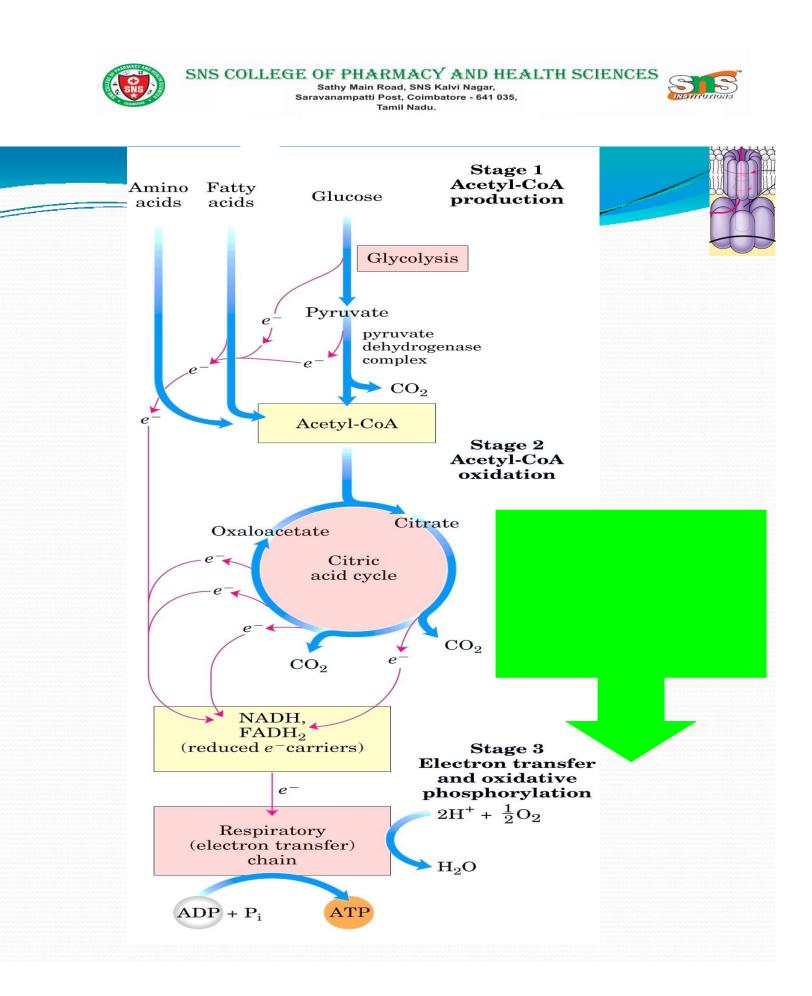
$RH_2 + NAD^+ \rightarrow NADH + H^+ + R$

Electron Transport: Electrons carried by reduced coenzymes (**NADH & FADH**) are passed through a chain of proteins and coenzymes to drive the generation of an **electrochemical or proton gradient across** the inner mitochondrial membrane.

Redox potential \rightarrow Electron affinity

Oxygen has the **highest** electron affinity ($\uparrow\uparrow\uparrow$ highest- redox-potential), **electrophilic**. Hydrogen has the **lowest** electron affinity ($\downarrow\downarrow\downarrow\downarrow$ lowest redox potential), **nucleophilic**.

Oxidative phosphorylation is the process of converting this high redox potential into energyrich ATP molecules.

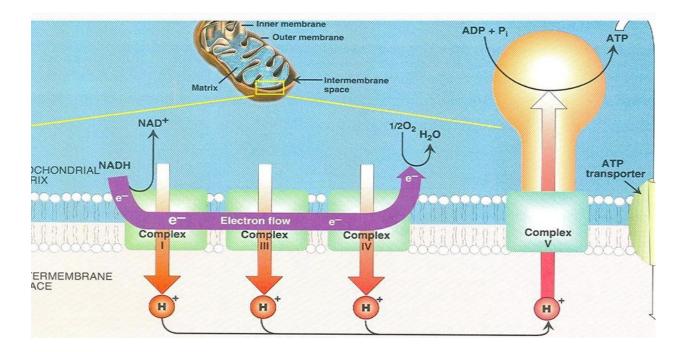

RH₂→NADH & FADH→ETC Proteins

(electron transport + H+ pumping \rightarrow Electrochemical Gradient) $\rightarrow O_2 \rightarrow H_2O$ + ATP

Components of ETC are **arranged** in order of **increasing** redox potential.

Electron passes on from electronegative NADH to electropositive O₂.

- Electron transfer to O₂ is **highly exergonic**.
- Called **respiratory** chain because of the reduction of O₂ from respiration into H₂O.
- 95% of oxygen consumed by humans is reduced to H₂O by cytochrome oxidase (300 ml H₂O/day) and called metabolic water.


Correlation between Electron Transport system & oxidative phosphorylation

Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes (in ETC) to drive the generation of a **proton gradient** across the **inner** mitochondrial membrane.

Oxidative Phosphorylation: The proton gradient runs downhill to drive the synthesis of ATP.

In biologic systems:

Cells use electron transport chain to transfer electrons **stepwise** from substrates to oxygen thus producing energy **gradually**. This process is **stepwise**, **efficient** and**controlled**. During hydrogen (H+ and electron) transfer through different components of the redox chain, energy is released **gradually** in **small** utilizable amounts instead of a **massive** energy production in the form of **heat**, which if happens may **destroy** the living cells.

ETC Complexes

Four protein complexes (I to IV) in the in mitochondrial membrane and one ATP synthase complex.

A lipid soluble coenzyme (UQ, CoQ) and a water soluble protein (cytc) shuttle between protein complexes.

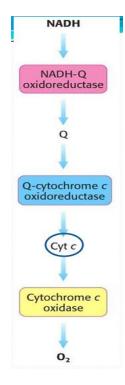
Electrons generally **fall or flow** in energy through the chain - from complexes I and II to complex III \rightarrow IV (**RH**₂ \rightarrow **H**⁺ $e^- \rightarrow$ **O**₂).

Complex I = NADH-CoQ10 oxidoreductase (Electron transfer from NADH to CoQ10) = **4H**+ **pumped**

This complex accept H^+ and Hydride ion from reduced NAD.

Complex II = succinate dehydrogenase (succinate CoQ10 oxidoreductase) This complex accept H^+ and Hydride ion from reduced FAD and no H^+ pumped.

CoQ: Lipid soluble Ubiquinone called Coenzyme Q that accept H atoms from complex I and II to **transfer** it into complex III.

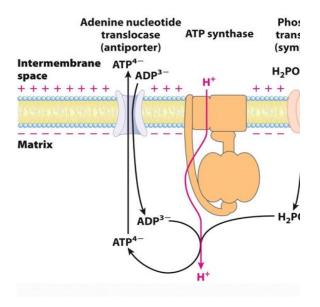

Complex III= CoQ10-Cytochrome c oxidoreductase CoQ10 (contains cytochromes, **b and c**)

passes electrons to Cyt c (and pumps H^+) in a unique redox cycle known as the Q cycle. **4H**+ **pumped.**

Cytochrome c: is a water-soluble electron carrier, transfer electrons from complex III to complex IV.

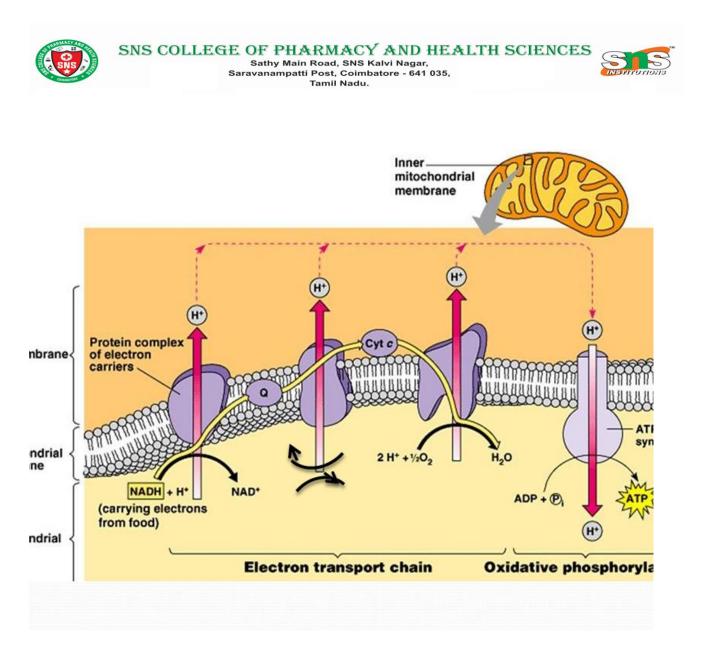
Complex IV = Cytochrome oxidases ($a+a_3$ and copper center). Electrons from cytochrome c are used in a four-electron reduction of O₂ to produce 2H₂O. O₂ is the final electron acceptor. 2H+ pumped.

Mobile Electron Carriers


CoQ (Ubiquinone)	Cyt C
Lipid soluble mobile electron carrier	Water soluble mobile electron carrier
Organic molecule (not a protein).	Metallo-protein.
Carry electron from Complex I or II to complex III	Carry electron from Complex III to complex IV

Complex V = ATP Synthase

It is H+ channel responsible for the Coupling of the energy from **e**⁻ Transport and H+ flow with **oxidative phosphorylation** to produce energy as **ATP**.


The enzyme use the proton gradient across the inner membrane to drive the synthesis of ATP

Mitchell's hypothesis (chemiosmosis model)

Complex I, III and IV act as proton pumps.

The translocation of protons H^+ from the mitochondrial matrix into the inter-mitochondrial space is called (**proton pumping**) H_+ pumping & electron transport results in an **electrochemical gradient**

Summary of ETC and oxidative phosphorylation

- ✓ If substrate enter ETC through NADH+H⁺ → 3ATP
- $\checkmark~$ If substrate enter ETC through FADH2 (flavoprotein) $\rightarrow~$ 2ATP

Chemiosmotic Hypothesis

Proton motive force: energy released by flow of H^+ down its gradient is used for ATP synthesis.

The energy obtained from **electron transport** is coupled to the **proton motive force** in what's called **Chemiosmosis**.

Mitchell proposed that a proton gradient across the inner membrane could be used to drive ATP synthesis.

Electrochemical gradient.

Energy generated by **Electrochemical gradient** is sufficient to drive ATP synthesis i.e. **couples oxidation to phosphorylation.**

Findings to support chemiosmosis model

Addition of protons (acid) to the external medium of the mitochondria stimulates ATP production. Oxidative phosphorylation does **not** occur in case of solubilising mitochondrial membranes.