

GLYCOLYSIS

(Embden-Meyerhof Parnas Pathway)

Definition : Glycolysis is the process in which glucose is converted into pyruvate (aerobic) or lactate (anaerobic) with simultaneous production of energy

Introduction:

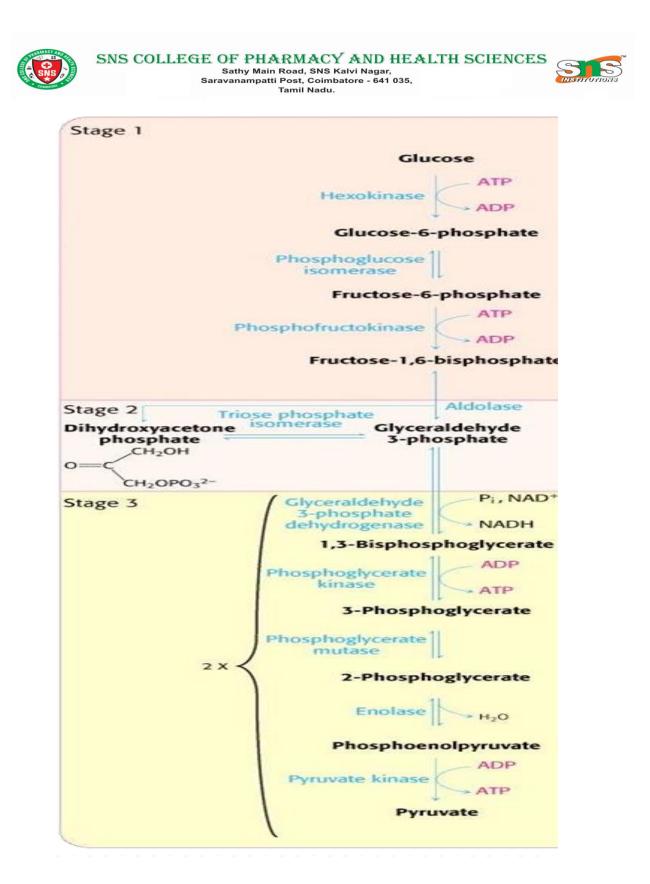
shutterstock.com • 194850719

Glycolysis converts glucose (C H O) molecules to two molecules of pyruvic acid (C H O). $6 \ 12 \ 6$ Pyruvic acid is more oxidized than glucose.

The energy released from the oxidation is used to create 2 molecules of ATP from 2 ADP and 2 Pi this is an **anaerobic** process. Under anaerobic conditions the pyruvic acid can be **fermented** to lactic acid or to ethanol plus CO₂. Under **aerobic** conditions, glucose is oxidized all the way to carbondioxide and water.

Glucose can also be synthesized from molecules such as pyruvic acid or lactic acid. This process is called **gluconeogenesis**

In mammals, glucose is the preferred fuel source for the brain and the only fuel source for red blood cells.Almost all organisms use glucose


Significance

Glucose is an important fuel for most organisms.

- It takes place in cytoplasm of all cells
- Essentially all cells carry out glycolysis
- Brain and red blood cells are mostly dependent on glycolysis
- Only pathway taking place in all cells of the body
- Only source of energy for erythrocytes
- Anaerobic glycolysis forms the major source of energy for muscles
- Glycolysis is the preliminary step before complete oxidation
- It provides carbon skeleton for the synthesis of essential amino acids and glycerol part of fat
- Most of the reactions are reversible and used in gluconeogenesis

TABLE 16.3 Reactions of glycolysis

Step	Reaction	Enzyme	Reaction type
t	Glucose + ATP \longrightarrow glucose 6-phosphate + ADP + H ⁺	Hexokinase	Phosphoryl transfer
2	Glucose 6-phosphate ==== fructose 6-phosphate	Phosphoglucose isomerase	Isomerization
3	Fructose 6-phosphate + ATP \rightarrow	Phosphofructokinase	Phosphoryl transfer
	fructose 1,6-bisphosphate + ADP + H+		
4	Fructose 1,6-bisphosphate ===	Aldolase	Aldol cleavage
	dihydroxyacetonephosphate + glyceraldehyde 3-phosphate		
5	Dihydroxyacetone phosphate 🚎 glyceraldehyde 3-phosphate	Triose phosphate isomerase	Isomerization
6	Glyceraldehyde 3-phosphate $+P_i + NAD^+ \implies$ 1,3-bisphosphoglycerate + NADH + H ⁺	Glyceraldehyde 3-phosphate dehydrogenase	Phosphorylation coupl to oxidation
7	1,3-Bisphosphoglycerate + ADP = 3-phosphoglycerate + ATP	Phosphoglycerate kinase	Phosphoryl transfer
8	3-Phosphoglycerate ==== 2-phosphoglycerate	Phosphoglycerate mutase	Phosphoryl shift
9	2-Phosphoglycerate ==== phosphoenolpyruvate +H2O	Enolase	Dehydration
10	Phosphoenolpyruvate + $ADP + H^+ \rightarrow pyruvate + ATP$	Pyruvate kinase	Phosphoryl transfer

Energetics for aerobic glycolysis

- Glyceraldehyde-3-phosphate dehydrogenase NADH 2.5x2 = 5 ATP
- 1,3 bis phospho glycerate

kinase – ATP- 1x2 = 2 ATP

• Pyruvate kinase - ATP - 1x2 = 2 ATP

Total 9 -2 = 7 ATP

• 7 ATP in aerobic glycolysis

Regulation of Glycolysis (Rate limiting)

- Hexokinase- high affinity for glucose will act even atlow glucose concentrations. So brain and RBCs get necessary energy.
- Phosphofuctokinase
- Pyruvate kinase when energy is in plenty in the cell, glycolysis is inhibited. Insulin favours glycolysis and glucagon inhibits glycolysis