

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 1- BASIC STRUCTURE OF COMPUTERS

Topic 7 : Instruction and Instruction sequencing

Instruction and Instruction sequencing

A computer must have instructions capable of performing four types of operations:

- 1. Data transfers between the memory and the processor registers
- 2. Arithmetic and logic operations on data
- Program sequencing and control 3.
- I/O transfers 4.

Instruction and Instruction sequencing-**Register Transfer Notation (RTN)**

✓ Identify a location by a symbolic name standing for its hardware binary address (LOC, RO,...) Contents of a location are denoted by placing square brackets around the name of the location $R1 \leftarrow [LOC]$ $R3 \leftarrow [R1]+[R2])$

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Instruction and Instruction sequencing-Assembly language notation

Represent machine instructions and programs. Move LOC, $R1 = R1 \leftarrow [LOC]$ Add R1, R2, R3 = R3 \leftarrow [R1]+[R2]

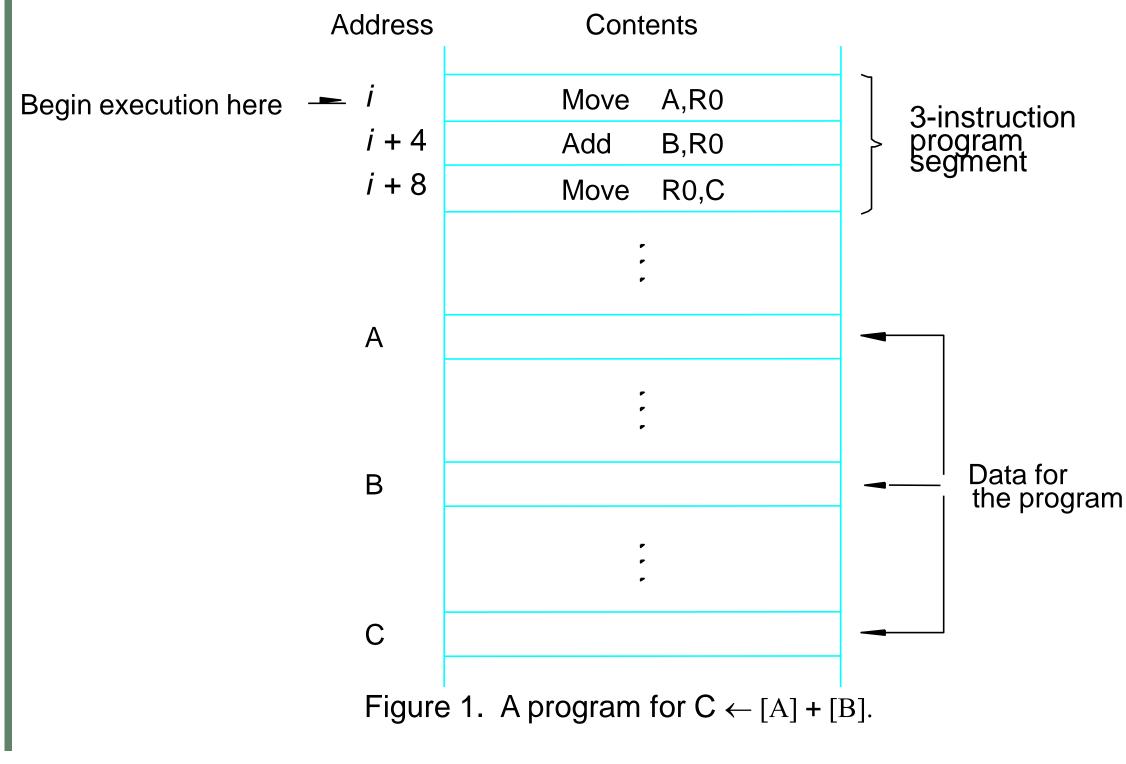
Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Instruction and Instruction sequencing-Basic Instruction types

Three-Add	ress Instru	ictions		
Add	A,B,C	C ←[A]+[B]		
Two-Address Instructions				
Add	B,D	$D \leftarrow [B]+[D]$		
One-Address Instructions				
Add	В	$AC \leftarrow [AC] + [B]$		
Load	A			
Store	С			
Zero-Address Instructions				
Add		$TOS \leftarrow TOS + (TOS - 1)$		

Instruction and Instruction sequencing-**Basic instruction types**

Example: Evaluate C= A+ B Both the operands are in registers Move A,R0 Move B,R1 Add RO,R1 Move R1,C


Example: One operand in the memory and another one in the register

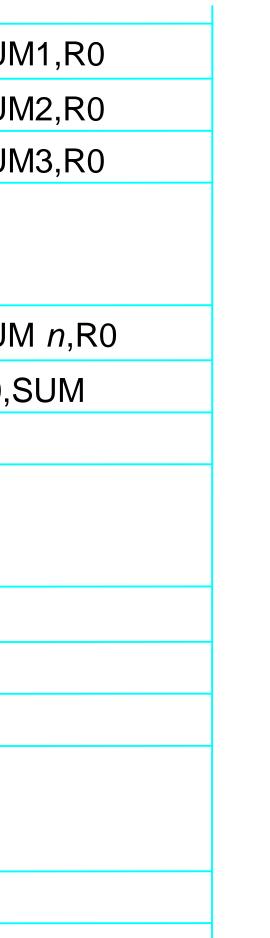
- 1. Move A, R1
- 2. Add B,R1
- 3. Move R1,C

Instruction Execution and Straight-Line Sequencing

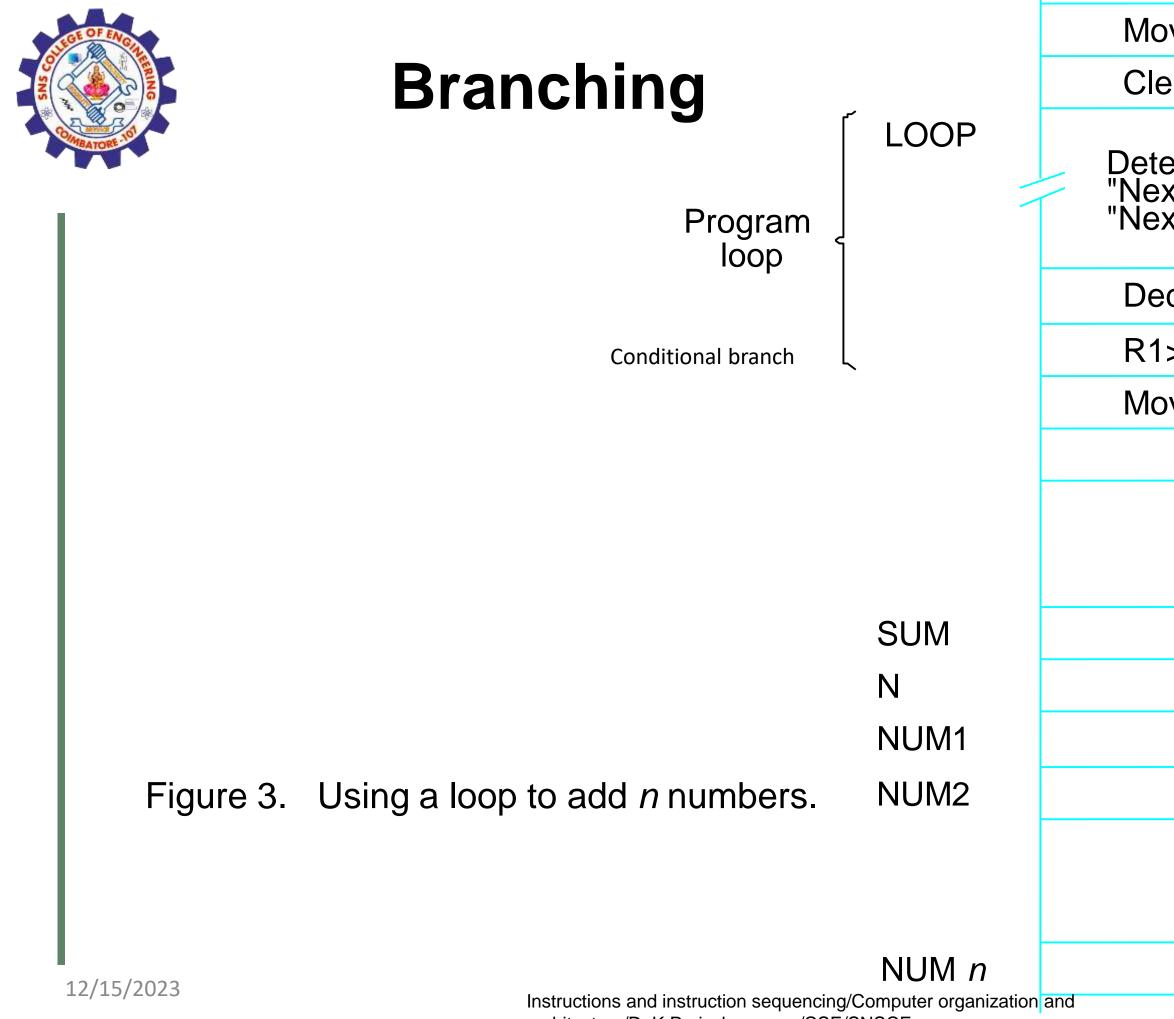
Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Assumptions:

- One memory operand per instruction
- 32-bit word length
- Memory is byte addressable
- Full memory address can be directly specified in a single-word instruction


Two-phase procedure -Instruction fetch -Instruction execute

Page 43


i	Move	NUN
<i>i</i> + 4	Add	NUN
<i>i</i> + 8	Add	NUN
		• •
i + 4n- 4	Add	NUN
i + 4n	Move	R0,\$
		•
		•
SUM		•
NUM1		
NUM2		
		•
		•
NUM <i>n</i>		-
Figure 2. A strai	ight-line pro	ogram

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

n for adding *n* numbers.

architecture/Dr.K.Periyakaruppan/CSE/SNSCE

	1	
ove	N,R1	
ear	R0	
ermine add xt" number xt" number	ress of and add to R0	
ecrement	R1	
>0	LOOP	
ove	R0,SUM	
•		
n		
• •		

Instruction and Instruction sequencing

Condition code flags

Condition code register / status register N (negative) Z (zero) V (overflow) C (carry) Different instructions affect different flags

Assessment

a). What are the 4 types of operations?

b) Give the purpose of the following:

- 1.Register transfer notation_____
- 2. Assembly language notation _____
- 3.Condition code flags _____

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

