SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE
 II YEAR /III SEMESTER

Unit - Arithmetic operations

Topic 4 : Signed operand multiplication

Signed Multiplication

Considering 2's-complement signed operands, what will happen to $(-13) \times(+11)$ if following the same method of unsigned multiplication?

Sign extension of negative multiplicand.

Signed Multiplication

For a negative multiplier, a straightforward solution is to form the 2's-complement of both the multiplier and the multiplicand and proceed as in the case of a positive multiplier.
This is possible because complementation of both operands does not change the value or the sign of the product.
A technique that works equally well for both negative and positive multipliers - Booth algorithm.

Booth Algorithm

In general, in the Booth scheme, -1 times the shifted multiplicand is selected when moving from 0 to 1 , and +1 times the shifted multiplicand is selected when moving from 1 to 0 , as the multiplier is scanned from right to left.

0	0	1	0	1	1	0	0	1	1	1	0	1	0	1	1	0	0
0	+1	$-1+1$	0	-1	$0+1$	0	0	-1	+1	$-1+1$	0	-1	0	0			

Booth recoding of a multiplier.

Booth Algorithm

$$
\begin{array}{rrrrrr}
0 & 1 & 1 & (+13) \\
\times 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{lllllllllll}
& & & & & 0 & 0 & 1 & 0 & 1 \\
0 & -1 & +1 & -1 & 0 \\
\cline { 4 - 8 } & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & & \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & & & \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & & & & \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & (-78)
\end{array}
$$

Booth multiplication with a negative multiplier.

Booth Algorithm

Multiplier	Version of multiplicand selected by bit i	
Bit i		$0^{\times} \mathrm{M}$
0	0	$+1^{\times} \mathrm{M}$
0	1	$-1^{\times} \mathrm{M}$
1	0	$0^{\times} \mathrm{M}$
1	1	

Booth multiplier recoding table.

Booth Algorithm

Best case - a long string of 1's (skipping over 1s) Worst case - 0's and 1's are alternating

| Worst-case
 multiplier | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 |

Ordinary multiplier

$$
\begin{array}{cccccccccccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & +1 & -1 & +1 & 0 & -1 & +1 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}
$$

Good multiplier

$$
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
& & & & & & & & \downarrow & & & & & & & \\
0 & 0 & 0 & +1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & +1 & 0 & 0 & -1
\end{array}
$$

Bit-Pair Recoding of Multipliers

Bit-pair recoding halves the maximum number of summands (versions of the multiplicand).

(a) Example of bit-pair recoding derived from Booth recoding

Bit-Pair Recoding of Multipliers

Multiplier bit-pair		Multiplier bit on the right $i-1$	Multiplicand selected at position	i
$i+1$	i	0	0	X
0	0	1	M	
0	0	0	1	X

(b) Table of multiplicand selection decisions

Bit-Pair Recoding of Multipliers

Carry-Save Addition of Summands(Cont.,)

Carry-Save Addition of Summands(Cont.,)

Consider the addition of many summands, we can:
$>$ Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay
$>$ Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a further set of S and C vectors in one more full-adder delay
$>$ Continue with this process until there are only two vectors remaining $>$ They can be added in a RCA or CLA to produce the desired product

Carry-Save Addition of Summands

					1	0	1	1	0	1
				\times	1	1	1	1	1	1

(45)	M
(63)	Q
A	
B	
C	
D	
E	
F	
$(2,835)$	Product

Figure 6.17. A multiplication example used to illustrate carry-save addition as shown in Figure 6.18.

Figure 6.18. The multiplication example from Figure 6.17 performed using carry-save addition.

Assessment

a). What is Booth

Algorithm?

b) Mention the purpose of 1.Bit pair recoding.
2.Booth algorithm

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6 ${ }^{\text {th }}$ Edition 2012.
2. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman /Elsevier, $5^{\text {th }}$ edition, 2014.
3. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education $8^{\text {th }}$ Edition, 2010
4. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, $3^{\text {rd }}$ Edition, 2002
5. M. Morris R. Mano "Computer System Architecture" $3^{\text {rd }}$ Edition 2007
