SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 2-Arithmetic operations

Topic 1 : Addition and subtraction of signed numbers

II unit syllabus

Unit II ARITHMETIC OPERATIONS
 Addition and subtraction of signed numbers - Design of fast adders - Multiplication of positive numbers - Signed operand multiplication- fast multiplication - Integer division - Floating point numbers and operations

SIGNED BIT REPRESENTATION

Representation of both positive and negative numbers

- Following 3 representations

> Signed magnitude representation Signed 1's complement representation Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number
Only one way to represent $\quad+9==>0001001$

Three different ways to represent -9:
In signed-magnitude: 1001001
In signed-1's complement: 1110110
In signed-2's complement: 1110111

Conversion

Decimal -> binary

Divide by 2	Remainder	
4382		$4382_{\text {ten }}=$
2191	0	$1000100011110_{\text {two }}$
1095	1	
547	1	
273	1	
136	1	
68	0	
34	0	
17	0	
8	1	
4	0	
2	0	Hexadecimal: base $16 . \quad$ Octal: base 8
1	0	$1010 \quad 1011$
0	1	0011
0		

Addition and Subtraction:

Binary Addition and Subtraction

Let's try adding $6_{\text {ten }}$ to $7_{\text {ten }}$ in binary and then subtracting $6_{\text {ten }}$ from $7_{\text {ten }}$ in binary.

| | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | $0111_{\mathrm{two}}=7_{\text {ten }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | $0110_{\mathrm{t}_{\mathrm{wo}}}=6_{\text {ten }}$ |
| $=$ | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | $1101_{\mathrm{two}}=13_{\mathrm{ten}}$ |

The 4 bits to the right have all the action; Figure shows the sums and carries. The carries are shown in parentheses, with the arrows showing how they are passed.

Binary addition, showing carries from right to left. The rightmost bit adds 1 to 0 , resulting in the sum of this bit being 1 and the carry out from this bit being 0 . Hence, the operation for the second digit to the right is $0+1+1$. This generates a 0 for this sum bit and a carry out of 1 . The thind digit is the sum of $1+1+1$, resulting in a carry out of 1 and a sum bit of 1 . The fourth bit is $1+$ $0+0$, yielding a 1 sum and nadditionand subbtraction of signed numbers/Computer organization and

Subtraction:

$00000000000000000000000000000111_{\text {two }}=7_{\text {ten }}$

-
$=$
0

or via addition using the two's complement representation of -6 :
$00000000000000000000000000000111_{\text {two }}=7_{\text {ten }}$
$+\quad 11111111111111111111111111111010_{\text {two }}=-6_{\text {ten }}$
$=$
$000000000000000000000000000010001_{\text {two }}=1_{\text {ten }}$

Arithmetic Addition

Signed-magnírude Addivion

- The addition of two numbers in the sigmed-magmirude system follows the rules of ordinary arithmetic.
- If the signs are the same, we add the two magnitudes and give the sum the common sign.
- If the signs are different, we subtract the smaller magnitude from the larger and give the result the sign of the larger magnitude.
- For example, $(+25)+(-37)=-(37-25)=-12$ and is done by subtracting the smaller magnitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the result.
Signed 2's complement addition
- The addition of two numbers in the signed 2 's complement addition system follows.
- Add the two numbers, including their sign bits, and discard any carry out of the sign (leftmost) bit position. Numerical examples for addition are shown below.
Eg 1:

+6	00000110
+13	00001101
+19	00010011

Eg 2:

-6	11111010
+13	00001101
+7	1100000111

(Signed 2's complement of -6)

Eg3:

+6	00000110
-13	11110011
-7	11111001

Eg4:
$-6 \quad 11111010$

Arithmetic subtraction

Eg 1:	-6	11111010	(Signed 2's complement of -6)
	-13	11110011	(Signed 2's complement of -13)
	-6	11111010	
	$\underline{-13}$	00001101	(2 's complement of -13)
	$+7$	1] 00000111	
Eg 2:			
	$+13$	00001101	
	$+6$	00000110	
	$+13$	00001101	
	± 6	11111010	(2 's complement of +6)
	$+7$	1] 00000111	
Eg 3:			
	-6	11111010	(Signed 2's complement of -6)
	$+13$	00001101	
	-6	11111010	
	$+13$	11110011	(2 's complement of +13)
	-19	1] 11101101	

Four Bit Adder-Subtractor:

Overflow conditions for addition and subtraction

\checkmark overflow occurs when adding two positive numbers and the sum is negative, or vice versa. This means a carry out occurred into the sign bit.
\checkmark Overflow occurs in subtraction when we subtract a negative number from a positive number and get a negative result, or when we subtract a positive number from a negative number and get a positive result. This means a borrow occurred , from the sign bit.

Assessment

a). What is signed number?
b) Mention the purpose
1.ALU unit \qquad
2. Adder circuit \qquad
3.Adder/subtracor \qquad

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6 ${ }^{\text {th }}$ Edition 2012.
