

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 2-Arithmetic operations

Topic 1 : Addition and subtraction of signed numbers

II unit syllabus

Unit II **ARITHMETIC OPERATIONS**

Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication- fast multiplication – Integer division – Floating point numbers and operations

10

SIGNED BIT REPRESENTATION

Representation of both positive and negative numbers

- Following 3 representations

Signed magnitude representation Signed 1's complement representation Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 => 0.001001

- Three different ways to represent - 9:
 - In signed-magnitude: 1 001001
 - In signed-1's complement: 1 110110
 - In signed-2's complement: 1 110111

Conversion

Decimal -> binary

Divide by 2 Remainder

4382	
2191	0
1095	1
547	1
273	1
136	1
68	0
34	0
17	0
8	1
4	0
2	0
1	0
0	1

Hexadecimal: base 16. Octal: base 8 1010 1011 0011 $1111_{two} = ab3f_{hex}$

4382_{ten} = 1 0001 0001 1110_{two}

Addition and Subtraction:

Binary Addition and Subtraction

Let's try adding 6_{ten} to 7_{ten} in binary and then subtracting 6_{ten} from 7_{ten} in binary.

	0000	0000	0000	0000	0000	0000	0000	0
+	0000	0000	0000	0000	0000	0000	0000	0
=	0000	0000	0000	0000	0000	0000	0000	1

The 4 bits to the right have all the action; Figure carries. The carries are shown in parentheses, with the arrows showing how they are passed.

Binary addition, showing carries from right to left. The rightmost bit adds 1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is 1 + 10 + 0, vielding a 1 sum and Addition and subtraction of signed numbers/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

- $(111_{two} = 7_{ten})$
- $0110_{two} = 6_{ten}$
- $101_{two} = 13_{ten}$

shows the sums and

or via addition using the two's complement representation of -6: $0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0111_{two} = 7_{ten}$ $1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1010_{two} = -6_{ten}$

Arithmetic Addition

Signed-magnitude Addition

- The addition of two numbers in the signed-magnitude system follows the rules of ordinary ٠ arithmetic.
- If the signs are the same, we add the two magnitudes and give the sum the common sign. ٠
- If the signs are different, we subtract the smaller magnitude from the larger and give the result the ٠ sign of the larger magnitude.
- For example, (+25) + (-37) = -(37 25) = -12 and is done by subtracting the smaller magnitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the result. Signed 2's complement addition
- The addition of two numbers in the signed 2's complement addition system follows. •
- Add the two numbers, including their sign bits, and discard any carry out of the sign (leftmost) bit • position. Numerical examples for addition are shown below.

Eg 1:

+6	00000110		
<u>+13</u>	00001101		
<u>+19</u>	00010011		

Eg 2:

-6	11111010	(Signed 2's complement
+13	00001101	
+7	1]00000111	

Eg3:

	+6	00000110	
	<u>-13</u>	11110011	(Signed 2's complement
	<u>-7</u>	11111001	(Signed 2's complement
Eg4:			
	-6	11111010	(Signed 2's complement

it of -6)

of -13) of -7)

of -6)

Arithmetic subtraction

Eg 1:			
Lg I.	-6	11111010	(Signed 2's complement of
	-13	11110011	(Signed 2's complement of
	-6	11111010	
	-13	00001101	(2's complement of -13)
	+7	1] 00000111	
Eg 2:			
	+13	00001101	
	+6	00000110	
	+13	00001101	
	<u>+6</u>	11111010	(2's complement of +6)
	<u>+7</u>	1] 00000111	
Eg 3:			
	-6	11111010	(Signed 2's complement of
	+13	00001101	
	-6	11111010	
	<u>+13</u>	11110011	(2's complement of +13)
	-19	1] <u>11101101</u>	

Addition and subtraction of signed numbers/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

of -6) of -13)

of -6)

Four Bit Adder-Subtractor:

4-Bit Adder Subtractor

Addition and subtraction of signed numbers/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

į.

Overflow conditions for addition and subtraction

verflow occurs when adding two positive numbers and the sum is negative, or vice versa. This means a carry out occurred into the sign bit.

✓ Overflow occurs in subtraction when we subtract a negative number from a positive number and get a negative result, or when we subtract a positive number from a negative number and get a positive result. This means a borrow occurred, from the sign bit.

Assessment

a). What is signed number?

b) Mention the purpose

- 1.ALU unit_____
- 2. Adder circuit
- 3.Adder/subtracor

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

Addition and subtraction of signed numbers/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

