

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 5: I/O ORGANIZATION AND PARALLELISM

Topic 7: Instruction Level Parallelism : Concepts and Challenges

ELISM epts and

ILP

- The simultaneous execution of multiple instructions from a program.
- While pipelining is a form of ILP, the general application of ILP goes much further into more aggressive techniques to achieve parallel execution of the instructions in the instruction stream.

Two basic approaches:

- rely on hardware to discover and exploit parallelism 1. dynamically, and
- rely on software to restructure programs to 2. statically facilitate parallelism. These techniques are complimentary. They can be and are used to improve performance

Dependencies and Hazards

- 3 types of dependencies:
- data dependencies (or true data dependencies),
- name dependencies, and
- control dependencies.

Examples of each dependence in ILP

- **1. Data Dependence**
- Read After Write(RAW)

Instruction j tries to read operand before I Instrn writes it

I: add r1,r2,r3

J: sub r4,r1,r3

2.Anti-dependence

Instr J writes operand *before* Instr I reads it

I: sub r4,r1,r3

- J: add r1,r2,r3
- K: mul r6,r1,r7
- **3. Output dependence**

InstrJ writes operand *before* Instr I writes it.

- I: sub r1,r4,r3
- J: add r1,r2,r3

K: mul r6,r1,r7

ILP concepts and challenges/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Data hazards

A hazard exists whenever there is a name or data dependence between two instructions and they are close enough that their overlapped execution would violate the program's order of dependency.

- Possible data hazards:
- RAW (read after write)
- WAW (write after write)
- WAR (write after read)
- RAR (read after read) is not a hazard.

Parallel processing challenges and solutions

Technique	Reduces
Forwarding and bypassing	Potential data
Delayed branches and simple branch scheduling	Control hazar
Basic dynamic scheduling (scoreboarding)	Data hazard s dependences
Dynamic scheduling with renaming	Data hazard s anti dependen dependences
Dynamic branch prediction	Control stalls
Issuing multiple instructions per cycle	Ideal CPI
Speculation	Data hazard a
Dynamic memory disambiguation	Data hazard s
Loop unrolling	Control hazar
Basic compiler pipeline scheduling	Data hazard s
Compiler dependence analysis	Ideal CPI, dat
Compiler speculation	Ideal CPI, dat

a hazard stalls

rd stalls

stalls from true

stalls and stalls from

nces and output

and control hazard stalls

stalls with memory

rd stalls

stalls

ta hazard stalls

ta, control stalls

Assessment

What is ILP? What are the challenges? What is data dependency? What is output dependency?

ILP concepts and challenges/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

