

Accessing I/O devices – Interrupts – Direct Memory Access – Buses–Interface

circuits - Standard I/O Interfaces (PCI, SCSI, USB) - Instruction Level

Parallelism: Concepts and Challenges – Introduction to multicore

Recap the previous Class

Introduction

• Multi-Core Processor:

- A processing system composed of two or more independent cores or CPUs.
- -The cores are typically integrated onto a single integrated circuit die, or they may be integrated on multiple dies in a single-chip package.

• Cores share memory:

- In modern multi-core systems, typically the L1 and L2 cache are private to each core, while the L3 cache is shared among the cores.
- In symmetric multi-core systems, all the cores are identical.
 - -Example: multi-core processors used in computer systems.
- In asymmetric multi-core systems, the cores may have different functionalities.

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Why Multi-core?

- It is difficult to sustain Moore's law and at the same time meet performance demands of various applications.
 - -Difficult to increase clock frequency, mainly due to power consumption issues.

Possible solution:

- Replicate hardware and run them at a lower clock rate to reduce power consumption.
- -1 core running at 3 GHz has the same performance as 2 cores running at 1.5 GHz, with lower power consumption.

Taxonomy of Parallel Architectures

- Single instruction-stream single data-stream (SISD)
 - Traditional uniprocessor systems.
- Multiple instruction-stream single data-stream (MISD)
 - No commercial implementation exists.
 - Pipelining can be argued as a type of MISD processing.
- Single instruction-stream multiple data-stream (SIMD)
 - -Array and vector processors.
- Multiple instruction-stream multiple data-stream (MIMD)
 - Multiprocessor systems (various architectures exist).

- Falls under SISD
- Typically two buses:

category.

- a) A high-speed CPUmemory bus, that also connects to I/O bridge.
- b) A lower-speed I/O bus, connecting various peripherals.

Single-core Computer

Single-core Processor

Locating North Bridge and South Bridge Chipset on Motherboard

 Bus speeds and other capabilities depend upon the chipset.

Multi-core Architecture

Traditional Multiprocessor Architectures

Can be broadly classified into two types:

a) Tightly coupled multiprocessors

- The processors access common shared memory.
- Inter-processor communication takes place through shared memory.
- Multi-core architectures fall under this category.

b)Loosely coupled multiprocessors

- Memory is distributed among the processors.
- Processors typically communicate through a high-speed interconnection network.

(a) Tightly Coupled Multiprocessors

(b) Loosely Coupled Multiprocessors

• Some features:

- -Cost-effective way to scale memory bandwidth.
- Communicating data between processors is complex and has higher latency.
- -Memory access time depends on the location of data.
 - Called Non Uniform Memory Access NUMA.

Cache Coherency Problem in Multiprocessors

- Maintaining coherence between data loaded in processor caches is an issue in multiprocessor systems.
 - -Same memory block is loaded into two processor caches.
 - -One of the processors updates the data in its local cache.
 - Data in the other processor cache and also memory becomes inconsistent.
- Broadly two classes of techniques are used to solve this problem:
- a) Snoopy protocols
- b) Directory-based protocols

- Some features:
 - -Difficult to extend it to large number of processors.
 - -Memory bandwidth requirements increase with the number of processors.
 - -Memory access time for all processors is uniform.
 - Called *Uniform Memory Access UMA*.

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU