

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107 An Autonomous Institution

1

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME : 19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE

II YEAR / III SEMESTER

Unit 1 : BASIC STRUCTURE OF COMPUTER Topic : MEMORY LOCATIONS AND ADDRESSES

- The memory consists of many millions of storage cells (flip-flops), each of which can store a bit of information having the value 0 or 1.
- Each group of n bits is referred to as a word of information, and n is called the word length.
- The word length can vary from 8 to 64bits.
- A unit of 8 bits is called a byte.

- Accessing the memory to store or retrieve a single item of information (either a word or a byte) requires distinct addresses for each item location. (It is customary to use numbers from 0 through 2k-1 as the addresses of successive locations in the memory).
- If 2k=number of addressable locations, then 2k addresses constitute the address space of the computer. For example, a 24-bit address generates an address space of 224 locations (16MB).

2-Dec-23

Examples of encoded information in a 32-bit word.

2-Dec-23

- Characters can be letters of the alphabet, decimal digits, punctuation marks and so on.
- Characters are represented by codes that are usually 8 bits long. E.g. ASCII code
- The three basic information quantities are: bit, byte and word.
- A byte is always 8 bits, but the word length typically ranges from 1 to 64 bits.
- It is impractical to assign distinct addresses to individual bit locations in the memory.

BYTE ADDRESSABILITY

- In byte addressable memory, successive addresses refer to successive byte locations in the memory.
- Byte locations have addresses 0, 1, 2. . . .
- If the word length is 32 bits, successive words are located at addresses 0, 4, 8. .with each word having 4 bytes.

There are two ways in which byte addresses are arranged.

- 1) Big-endian assignment: lower byte addresses are used for the more significant bytes of the word
- 2) Little-endian: lower byte addresses are used for the less significant bytes of the word

In both cases, byte addresses $0, 4, 8, \ldots$ are taken as the addresses of successive words in the memory.

BIG-ENDIAN AND LITTLE-ENDIAN ASSIGNMENTS

WORD ALIGNMENT

- Words are said to be aligned in memory if they begin at a byte address that is a multiple of the number of bytes in a word.
- For example, if the word length is 16(2 bytes), aligned words begin at byte addresses 0, 2, 4 And for a word length of 64, aligned words begin at byte addresses 0, 8, 16.
- Words are said to have unaligned addresses, if they begin at an arbitrary byte address.

ACCESSING NUMBERS, CHARACTERS CHARACTERS STRINGS

- A number usually occupies one word. It can be accessed in the memory by specifying its word address.
- Similarly, individual characters can be accessed by their byte address.
- There are two ways to indicate the length of the string.
- A special control character with the meaning "end of string" can be used as the last character in the string, or
- A separate memory word location or processor register can contain a number indicating the length of the string in bytes.

Performance Measurement

• If the SPEC rating = 50 means that computer under test is 50 times as fast as the reference computer.

ASSESSMENT

What is word length? What is byte?

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

15