SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY
 COURSE NAME: 19IT301 COMPUTER ORGANIZATION
 AND ARCHITECTURE

II YEAR/ III SEM

Unit 2 : ARITHMETIC OPERATIONS

Topic 5: Fast Multiplication

11/18/2023

Fast Multiplication

Two techniques for speeding up the multiplication operation

1. Bit-pair Recoding of Multipliers
2. Carry-Save addition of summands

Bit-pair Recoding of Multipliers:

- Guarantees the maximum number of summands (versions of multiplicand) added is $\mathrm{n} / 2$ for n -bit operands
Carry-Save Addition of summands
- Reduces the time needed to add the summands

Bit-pair Recoding of Multipliers

- It halves the maximum number of summands
- Derived from Booth algorithm

Multiplier		Version of multiplicand selected by bit i
Biti	Biti-1	
0	0	+1 XM
0	1	-1 XM
1	0	$0 \times \mathrm{M}$
1	1	

Sign extension
Example of bit-pair recoding derived from Booth recoding

Multinplier Bit pair recoding

Multiplier bit-pair		Multiplier bit on the right$i-1$	Multiplicand selected at position
$i+1$	i		
0	0	0	$0 \times \mathrm{M}$
0	0	1	+1 X M
0	1	0	+1 X M
0	1	1	+2 X M
1	0	0	-2 X M
1	0	1	-1 X M
1	1	0	-1 X M
1	1	1	$0 \times \mathrm{M}$

Table of multiplicand selection decisions

Example: Booth Multiplication

$$
\begin{aligned}
& \begin{array}{lllllcl}
0 & 1 & 1 & 0 & 1 & (+13) & -13=10011 \\
1 & 1 & 0 & 1 & 0 & (-6) &
\end{array} \\
& 01101 \\
& \begin{array}{llllllllll}
& & & & & & 0-1+1-1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & & \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & & & \\
0 & 0 & 0 & 0 & 0 & 0 & & & & \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}(-78)
\end{aligned}
$$

Example

Multiplier: 11010

1	1	0	1	0	0	
0	-1		-2			
+13	$=0$	1	1	0	1	
$1 ' s$	$=1$	0	0	1	0	
$2 ' s$	$=$				$1+$	
-13	$=1$	0	0	1	1	

Multiplicand:								0
		1	1	0	1			
1	1	1	1	1	0	0	1	1

Carry-Save Addition of Summands

- Multiplication requires addition of several summands.
- Carry- Save Addition(CSA) technique speeds up the addition process

$\mathrm{M} \times \mathrm{Q}=\mathrm{P}$ for 4-bit operands

Carry-Save Addition of Summands

- Consider the addition of many summands, we can:
$>$ Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay
$>$ Group all of the S and C vectors into threes, and perform carrysave addition on them, generating a further set of S and C vectors in one more full-adder delay
$>$ Continue with this process until there are only two vectors remaining
$>$ They can be added in a RCA or CLA to produce the desired product

Carry-Save Addition of Summands

Carry- Save Addition

			1	0	1	1	0	1
		1	0	1	1	0	1	
	1	0	1	1	0	1		
	1	1	0	0	0	0	1	1
0	0	1	1	1	1	0	0	

Product

Schematic Representaion of CSA

Gate Delays

Logic gate delay to perform 6×6 multiplication

- 1 AND gate delay
- 2 gate delays per CSA level
- CLA has 8 gate delays

Total gate delays $=1+2 \times 3$ CSA levels +8

$$
=15
$$

In general, for n summands of nxn multiplication, $=1.7 \log _{2} n-1.7$ levels of CSA steps needed
Using bit-pair recoding,
$=1.7 \log _{2} n-3.4$ levels of CSA steps needed

1. We make use of \qquad circuits to implement multiplication.
a) Flip flops
b) Combinatorial
c) Fast adders
d) None of the mentioned
2. The method used to reduce the maximum number of summands by half is \qquad
a) Fast multiplication
b) Bit-pair recoding
c) Quick multiplication
d) None of the mentioned

Assessment

3. The multiplier $-6(11010)$ is recorded as \qquad
a) 0-1-2
b) $0-1+1-10$
4. The product of $-13 \& 11$ is
c) $-2-10$
d) None
a) 1100110011
b) 1101110001
c) 1010101010
d) 1111111000
5. CSA stands for?
a) Computer Speed Addition
b) Carry Save Addition
c) Computer Service Architecture
d) None of the mentioned
6. C
7. B
8. A
9. B
10. B

Thank You

