

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE NAME: 19IT301 COMPUTER ORGANIZATION

AND ARCHITECTURE

II YEAR/ III SEM

Unit 2 : ARITHMETIC OPERATIONS

Topic 5: Fast Multiplication

SNSCE / IT / III Sem / Vaishnavee AP-IT

Fast Multiplication

Two techniques for speeding up the multiplication operation

- 1. Bit-pair Recoding of Multipliers
- 2. Carry-Save addition of summands

Bit-pair Recoding of Multipliers:

 Guarantees the maximum number of summands (versions of multiplicand) added is n/2 for n-bit operands

Carry-Save Addition of summands

Reduces the time needed to add the summands

Bit-pair Recoding of Multipliers

- It halves the maximum number of summands
- Derived from Booth algorithm ${\color{black}\bullet}$

Bit iBit i-1selected by bit i00 $0 \times M$ Sign extension01 $+1 \times M$ 110 $-1 \times M$ $0 = 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	Multiplier	Version of multiplica	and
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bit <i>i</i> Bit <i>i</i> -1	-	
1 0 $-1 \times M$ $0 -1 + 1 - 1$	0 0	0 X M	Sign extension $\boxed{1}$ 1 1 0 1
	0 1	+1 X M	
1 1 0 X M 0 1	1 0	-1 X M	
	1 1	0 X M	

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Multiplier Bit pair recoding

Multiplier bit-pair		Multiplier bit on the right	Multiplicand		
<i>i</i> + 1	i	i–1	selected at position		
0	0	0	0 X M		
0	0	1	+1 X M		
0	1	0	+1 X M		
0	1	1	+2 X M		
1	0	0	-2 X M		
1	0	1	-1 X M		
1	1	0	-1 X M		
1	1	1	0 X M		

Table of multiplicand selection decisions

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Example: Booth Multiplication 1 1 0 1 (+13) 0 -13 = 10011(-6) 1 1 0 1 0 0 1 0 1 0 - 1 + 1 - 1 0 0 0 0 0 0 0 0 1 1 1 0 \mathbf{O} 1 0 0 1 1 1 0 0 0 0 0 $\mathbf{0}$ 1 1 1 0 1 1 0 0 1 0 (-78)

Example

SNSCE / IT / V Sem / V Vaishnavee AP-IT

							NSTITU	
iplica	and:	0	1	1	0	1		
		0		- 1		- 2		
1	1	0	0	1	1	0	_	
1	0	0	1	1	X	Х		
0	0	0	X	X	X	X		
0	1	1	0	0	1	0	_	
requ	uiring	onl	y n/2	2 sun	nma	nds		

Carry-Save Addition of Summands

- Multiplication requires addition of several summands.
- Carry- Save Addition(CSA) technique speeds up the addition process

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Carry-Save Array

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Carry-Save Addition of Summands

- Consider the addition of many summands, we can: \succ Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay
 - \succ Group all of the S and C vectors into threes, and perform carrysave addition on them, generating a further set of S and C vectors in one more full-adder delay
 - > Continue with this process until there are only two vectors remaining
 - \succ They can be added in a RCA or CLA to produce the desired product

SNSCE / IT / V Sem / Vaishnavee AP-IT

A multiplication example used to illustrate carry-save addition

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

9/16

Carry- Save Addition

						1	0	1	
•					х	1	1	1	
						1	0	1	
					1	0	1	1	
				1	0	1	1	0	
				1	1	0	0	0	
			0	0	1	1	1	1	
				-					
			1	0	1	1	0	1	
		1	0	1	1	0	1		
	1	0	1	1	0	1			
	1	1	0	0	0	0	1	1	
0	0	1	1	1	1	0	0		
					_	0	0	•	
				1	1	0	0	0	
			0	0	1	1	1	1	
	1	1	0	0	0	0	1	1	
	1	1	0	1	0	1	0	0	
0	0	0	0	1	0	1	1	0	
0	0	1	1	1	1	0	0		
0	1	0	1	1	1	0	1	0	
0	1	0	1	0	1	0	0	0	
1	0	1	1	0	0	0	1	0	
SNSCE / IT/ V Sem/V VaishnaveeAP-I									

Schematic Representaion of CSA

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Gate Delays

Logic gate delay to perform 6 x 6 multiplication

- 1 AND gate delay
- 2 gate delays per CSA level
- CLA has 8 gate delays

Total gate delays = $1 + 2 \times 3 \text{ CSA}$ levels + 8 = 15

In general, for n summands of n x n multiplication, $= 1.7 \log_2 n - 1.7$ levels of CSA steps needed

Using bit-pair recoding,

 $= 1.7 \log_2 n - 3.4$ levels of CSA steps needed

SNSCE / IT / V Sem / Vaishnavee AP-IT

- 1. We make use of ______ circuits to implement multiplication.

- a) Flip flops
- b) Combinatorial
- c) Fast adders
- d) None of the mentioned

2. The method used to reduce the maximum number of summands by half is

- a) Fast multiplication
- b) Bit-pair recoding
- c) Quick multiplication
- d) None of the mentioned

Assessment

- 3. The multiplier -6(11010) is recorded as ______ a) 0-1-2
- b) 0-1+1-10
- c) -2-10
- d) None

- a) 1100110011 b) 1101110001 c) 1010101010 d) 1111111000

- 4. CSA stands for?
- a) Computer Speed Addition
- b) Carry Save Addition
- c) Computer Service Architecture d) None of the mentioned

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

5. The product of -13 & 11 is

Answers

1. C 2. B 3. A 4. B 5. B

SNSCE / IT/ V Sem/V VaishnaveeAP-IT

11/18/2023

15/16

Thank You

11/18/2023

SNSCE / IT/ V Sem/V VaishnaveeAP-IT

16/16