

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE NAME: 19IT301 COMPUTER ORGANIZATION

AND ARCHITECTURE

II YEAR/ III SEM

Unit 2 : ARITHMETIC OPERATIONS

Topic 4: Signed Multiplication: Booth Algorithm

SNSCE / IT / III Sem / Vaishnavee AP-IT

11/18/2023

Decimal to Binary Number Conversion

Convert decimal	number 112 into bi	inary
number		Rina
Division	Remainder (R)	
112 / 2 = 56	0	- 111
56 / 2 = 28	0	
28 / 2 = 14	0	=
14 / 2 = 7	0	IX∠°-
7 / 2 = 3	1	-04.
3 / 2 = 1	1	=64+
1/2=0	1	=112

Write remainder from bottom to up (in reverse order), this will be 1110000_2

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

ary to Decimal Conversion $000_2 \rightarrow \text{decimal}$ 0000

$+1x2^{5}+1x2^{4}+0x2^{3}+0x2^{2}+0x2^{1}+0x2^{3}$

32+16+0+0+0+0

10

2's Complement

$$112_{10} = 01110000_2$$

-112 = ?

1's complement of 01110000 = 10001111 2's complement

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

1+ -112 = 10010000

Signed Multiplication

Considering 2's-complement signed operands, what will happen to $(-13)\Box(+11)$ if following the same method of unsigned multiplication?

13 = 0000001101

		1 0	0 1	0 0	1 1	1 1	(-13) (+11)	
1	1	1	0	0	1	1		
1.	1	0	0	1	1			
0	0	0	0	0				
0	0	1	1					
0	0	0						
1	1	1	0	0	0	1	(-143)	
sion of negative multiplicand								
t of	f -1 4	-3 =	+14	3 = 0	00	100	011	
IT							3/11	

Normal Multiplicati

Consider in a multiplication, the multiplier is positive appropriately shifted versions of the multiplicand are procedure? 4

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

lic	at	ior	٦							S INSTIT	UTION	VIS
osit nd	tive are	00 e ac	111 Ide	10, d in	ho a s	w n star	nan nda	y rd				
			0	1	0	1	1	0	1			
			0	0 -	⊦1 -	+1-	+ 1 -	+1	0			
			0	0	0	0	0	0	0			
		0	1	0	1	1	0	1				
	0	1	0	1	1	0	1					
0	1	0	1	1	0	1						
1	0	1	1	0	1							
0	0	0	0	0								
0	0	0	0									
0	1	0	1	0	0	0	1	1	0			
No	Normal Multiplication Scheme											

Since 0011110 = 0100000 - 0000010, if we use the expression, what will happen?

- 0+1 0 - 1

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0	1	
0	0	0	0	0	0	0	0		
0	0	0	1	0	1	0	1	0	0

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

2's complement of the multiplicand

1 0

Booth multiplier recoding table

Mul	tiplier	Version of multiplicand				
Bit <i>i</i>	Bit <i>i</i> -1	selected by bit i				
0	0	0 X M	0	\cap	1	(
0	1	+ 1 X M	U	U	•	
1	0	– 1 X M	0+	-1 -	-1	+'
1	1	ΟΧΜ				

SNSCE / IT / V Sem / V Vaishnavee AP-IT

1 0-1 0+1 0 0-1+1-1+1 0-1 0 0

Booth recoding of a multiplier

Booth Algorithm

- Best case a long string of 1's (skipping over 1s) ullet
- Worst case 0's and 1's are alternating ullet

0 0 0 0 1 0 1 0 1 Worst-case multiplier +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 1 0 0 0 1 0 1 1 0 0 0 Ordinary multiplier 0 -1 0 0 +1 -1 +1 0 -1 +1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 Good multiplier ()0 0 +1 0 0 0 0 -1 0 0 0 +1

SNSCE / IT / V Sem / V Vaishnavee AP-IT

1/18/2023

SNSCE / IT / V Sem / V Vaishnavee AP-IT

11/18/2023

Booth's Algorithm Flowchart

Example: Booth's Algorithm

	M = -5 = 1011,	M'+1 = 0101			
	Q = -7 = 1001	OPERATION		AC	Q
				0000	10
		AC + M' + 1		0101	10
		ASHR		0010	11
	AC + M		1101	11	
		ASHR		1110	11
		ASHR		1111	01
		AC + M' + 1		0100	01
				0010	00
					Prod
					Prod
11/18/2	2023	SNSCE / IT	ſ/ V Sem	/V Vaishı	Prod naveeAP

- uct is calculated as follows:
- uct = AC Q
- uct = 0010 0011 = 35 P-IT

Assessment

The two numbers given below are multiplied using the Booth's algorithm. Multiplicand : 0101 1010 1110 1110 Multiplier : 0111 0111 1011 1101 How many additions/Subtractions are required for the multiplication of the above two numbers?

(A) 6 (B) 8 (C) 10 (D) 12

11/18/2023

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Thank You

11/18/2023

SNSCE / IT/ V Sem/V VaishnaveeAP-IT

