

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME: 19EC306 – Digital Circuits

II YEAR / III SEMESTER

Unit III- SEQUENTIAL CIRCUITS
Topic: Modulo n Counters

Modulus Counter (MOD-N Counter)

The 2-bit counter is called as MOD-4 counter and 3-bit counter is called as MOD-8 counter. So in general, an n-bit counter is called as modulo-N counter. Where, MOD number = 2n.

- 2-bit up or down (MOD-4)
- 3-bit up or down (MOD-8)
- 4-bit up or down (MOD-16)

Design Synchronous MOD-6 Counter Using JK flip flop

Step 1: Find number of flip-flops required to build the counter.

Flip-flops required are : $2^n \ge N$.

Here N = 6 \therefore n = 3

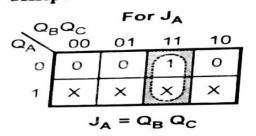
i.e. Three flip-flops are required.

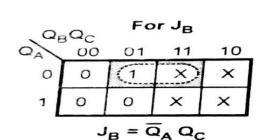
Step 2: Write an excitation table for JK flip-flop.

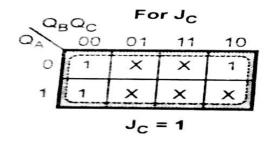
Q _n	Q _{n+1}	J	K	
0	0	0	×	
0	1	1	×	
1	0	х	1	
1	1	х	0	

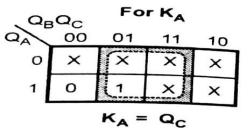
Step 3: Determine the transition table.

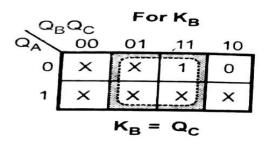
Р	Present state Next state			Flip-flop inputs							
Q _A	QB	Qc	Q _{A+1}	Q _{B+1}	1	JA	KA	J _B	K _B	Jc	Kc
0	0	0	0	0	1	0	×	0	х	1	X
0	0	1	0	1	0	0	×	1	х	x	1
0	1	0	0	1	1	0	×	x	0	1	x
0	1	1	1	0	0	1	×	x	1	x	1
1	0	0	1	0	1	X	0	0	х	1	x
1	0	1	0	0	0	x	1	0	х	x	1
1	1	0	х	х	х	х	х	х	х	x	x
1	1	1	х	х	х	х	х	х	х	х	x

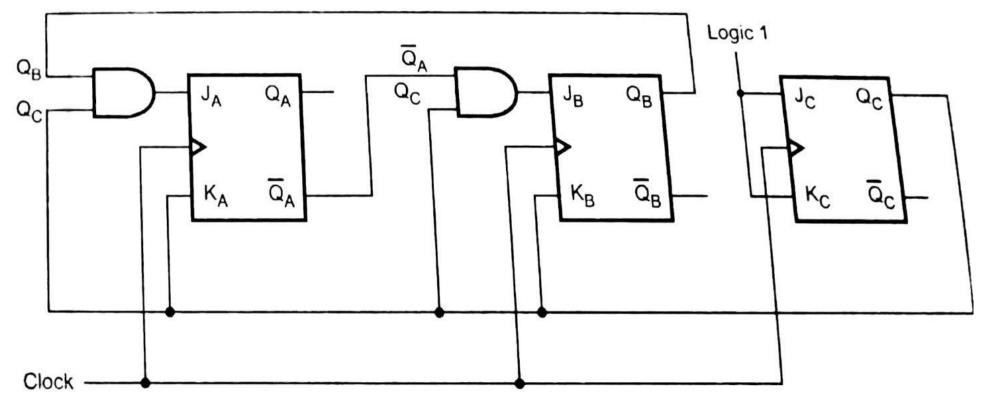



17-11-2023




Design Synchronous MOD-6 Counter Using JK flip flop


Step 4: K-map simplification for flip-flop inputs.



, Q _P	SQ _C For K _C			
QA	00	01	11	10
0	X	1	1	×
1	×	1	×	×.
•		K _C =	1	

Step 5: Implement the counter.

Eig 770 Implementation of MOD 6 overshappens accepted

17-11-2023

·--[1 4

Step 1: Find number of flip-flops required to build the counter.

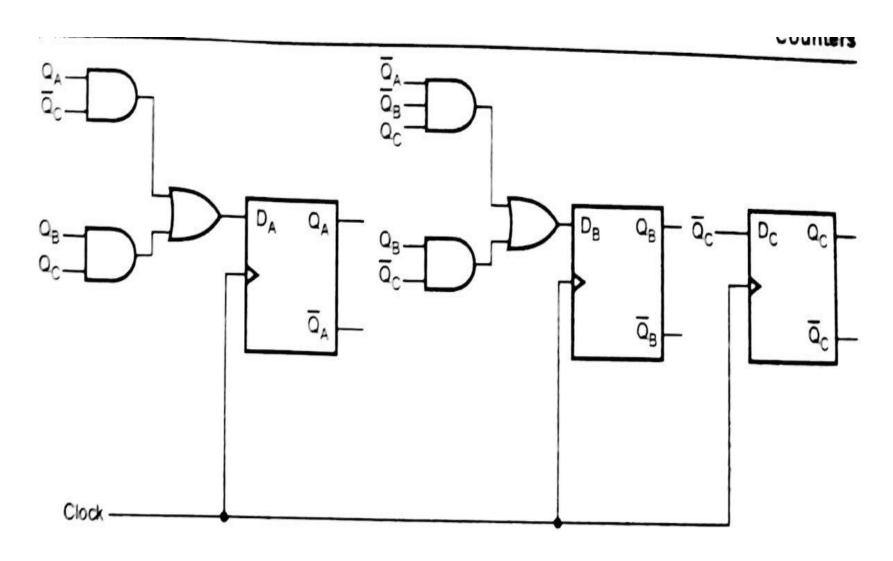
Flip-flops required are : $2^n \ge N$

Here
$$N = 6$$
 : $n = 3$

i.e. Three flip-flops are required.


Step 2: Determine the transition table.

Present state			Next state			
Q _A	QB	Qc	Q _A + 1	Q _{B+1}	Q _{C+1}	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	x x		×	
1	1	1	x x		x	



Step 3: K-map simplification for flip-flop inputs.

Any Query????

Thank you.....