

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 – Digital Circuits

II YEAR / III SEMESTER

Unit II- COMBINATIONAL CIRCUITS

Topic : Encoder, Decoder, parity checker and generator

Encoder, Decoder, parity checker and generator / 19EC306/ Digital circuits/Mr.S.HARIBABU/ECE/SNSCE

DECODER

Decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2ⁿ unique outputs.

A 2-to-4 decoder without enable

Decimal #	Input		Output			
	A1	A_0	\mathbf{D}_{0}	D ₁	D ₂	D_3
0	0	0	1	0	0	0
1	0	1	0	1	0	0
2	1	0	0	0	1	0
3	1	1	0	0	0	1

Truth table for 2-to-4 decoder

Truth Table

A_1	A ₀	D_3	D ₂	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Equations $D_0 = \overline{A_1} \cdot \overline{A_0}$ $D_1 = \overline{A_1} \cdot A_0$ $D_2 = A_1 \cdot \overline{A_0}$ $D_3 = A_1 \cdot A_0$

abc	y ₀	у 1	y ₂	y₃	<i>y</i> ₄	У ₅	<i>Y</i> 6	<i>У</i> 7
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

ENCODERS

An encoder has

- 2ⁿ inputs
- *n* outputs

Parity Generator

The parity generating technique is one of the most widely used error detection techniques for the data transmission.

A parity generator is a combinational logic circuit that generates the parity bit in the transmitter. On the other hand, a circuit that checks the parity in the receiver is called parity checker.

It is combinational circuit that accepts an n-1 bit stream data and generates the additional bit that is to be transmitted with the bit stream. This additional or extra bit is termed as a parity bit.

- In even parity bit scheme, the parity bit is '0' if there are even number of 1s in the data stream and the parity bit is '1' if there are odd number of 1s in the data stream.
- In odd parity bit scheme, the parity bit is '1' if there are even number of 1s in the data stream and the parity bit is '0' if there are odd number of 1s in the data stream. Let us discuss both even and odd parity generators.

Even Parity Generator

3-bit message			Even parity bit generator (P)
А	В	с	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Odd Parity Generator

3-bit message			Odd parity bit generator (P)
A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

09-11-2023

Odd Parity Checker

4-	4-bit received message			D in the loc
A	B	С	Р	Parity error check Cp
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Even Parity Checker

4-	bit receive	ed messag	Devite annou ab a de C	
Α	B	С	Р	Parity error check Cp
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Any Query????

Thank you.....

09-11-2023

Encoder, Decoder, parity checker and generator / 19EC306/ Digital circuits/Mr.S.HARIBABU/ECE/SNSCE