SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 - Digital Circuits
II YEAR / III SEMESTER

Unit II- COMBINATIONAL CIRCUITS
Topic : Encoder, Decoder, parity checker and generator

DECODER

$>$ Decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2^{n} unique outputs.

A 2-to-4 decoder without enable

Decimal \#	Input		$\mathbf{O u t p u t}^{\prime}$			
	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{D o}_{\mathbf{0}}$	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	\mathbf{O}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Truth table for 2 -to- 4 decoder

Logic Diagram

Truth Table

Equations

$$
\begin{aligned}
& \mathrm{D}_{0}=\overline{\mathrm{A}_{1}} \cdot \overline{\mathrm{~A}_{0}} \\
& \mathrm{D}_{1}-\overline{\mathrm{A}_{1}} \cdot \mathrm{~A}_{0} \\
& \mathrm{D}_{2}=\mathrm{A}_{1} \cdot \overline{\mathrm{~A}_{0}} \\
& \mathrm{D}_{3}=\mathrm{A}_{1} \cdot \mathrm{~A}_{0}
\end{aligned}
$$

$\left.\begin{array}{llllllllll}a & b & y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

ENCODERS

An encoder has

2^{n} inputs
n outputs

The parity generating technique is one of the most widely used error detection techniques for the data transmission.

A parity generator is a combinational logic circuit that generates the parity bit in the transmitter. On the other hand, a circuit that checks the parity in the receiver is called parity checker.

It is combinational circuit that accepts an $\mathrm{n}-1$ bit stream data and generates the additional bit that is to be transmitted with the bit stream. This additional or extra bit is termed as a parity bit.

- In even parity bit scheme, the parity bit is ' 0 ' if there are even number of 1 s in the data stream and the parity bit is ' 1 ' if there are odd number of 1 s in the data stream.
- In odd parity bit scheme, the parity bit is ' 1 ' if there are even number of 1 s in the data stream and the parity bit is ' 0 ' if there are odd number of 1 s in the data stream. Let us discuss both even and odd parity generators.

Even Parity Generator

3-bit message			Even parity bit generator (P)
A	B	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

3-bit message			Odd parity bit generator (P)
A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Odd Parity Checker

4-bit received message				Parity error check \mathbf{C}_{p}
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{P}	
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Even Parity Checker

4-bit received message				Parity error check $\mathbf{C}_{\mathbf{p}}$
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{P}	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Any Query????

Thank you......

