

SNS COLLEGE OF ENGINEERING (Autonomous) **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING**

19EC502 – TRANSMISSION LINES AND WAVE GUIDES

III YEAR/ V SEMESTER

UNIT 2 – GUIDED WAVES

TOPIC 2 – TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES

TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

11/9/2023

WHAT DO YOU RELATE FROM THIS?

Magnetic flux lines appear as continuous loops Electric flux lines appear with beginning and end points

EM WAVES - CLASSIFICATION

• EM waves are classified based on the type of field present in the direction of wave propagation

TWO TYPES

1. TE WAVES

2. TM WAVES

11/9/2023

TE WAVES

	TE WAVES LE
-	If Ez = 0, but Hz = 0 [: 1
	$Ey = \frac{\delta w_H}{L^2} \frac{\partial H_Z}{\partial x}$
	$H_{\mathcal{X}} = -\frac{7}{h^2} \frac{\partial H_2}{\partial x}$
	The work equation
-	$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2}$
CS Scanned with Carrières	$4 \frac{\partial^2}{\partial z^2} = \overline{y}^2$

11/9/2023

TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

z = 0) Ny & Ex=0] er., = - whEEy D

11/9/2023

TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

EM WAVE PROPAGATION BETWEEN PARALLEL PLANES - ANALYSIS

11/9/2023

EM WAVE PROPAGATION BETWEEN PARALLEL PLANES - ANALYSIS

Boundary condition

$$E_{tan} = 0$$
 at the surface of the b
conductors for all values of z and
 i
 $E_y = 0$ at $x = 0$
 $E_y = 0$ at $x = a$
for all values of z.

Applying B.C (i)
Ey = 0 at
$$x = 0$$

Ey = c_1 sin 0 + c_2 (or 0)
Ey = c_2
 \therefore c_2 must be zero to make Ey = 0 a
Then Eqn!. (3) becomes,
Ey = c_1 sin hx \rightarrow (4)

11/9/2023

Applying B.c (ii)
subs
$$Ey = 0$$
 at $x = x$ in $eq(\Phi)$
 $Ey^{\circ} = C_{1}$ sin hx
To make $Ey = 0$, h must be equa
 $\therefore h = m\pi$ for $m = 1, 2, 3$.
 $\therefore Ey^{\circ} = C_{1} \sin h (\frac{m\pi}{a})$
 $Ey = C_{1} \sin h (\frac{m\pi}{a})x \in C$

11/9/2023

Other Fields Determination

$$\overline{\nabla} Ey = -\overline{\partial} w\mu Hx$$

 $H_{\chi} = -\overline{\nabla} c_1 Sin \left(\frac{m\pi}{a}\right) \chi e^{-\frac{\pi}{2}}$
 $\overline{\partial} w_{\mu} \chi$

11/9/2023

TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

COMPARENCE IN THE INCLUSION OF THE INCLUS OF THE INCLUSION OF THE INCLUSION OF THE INCLUSIO

TEmo MODE

11/9/2023

-72 e a particular wn as

- \blacktriangleright For TM waves Hz=0
- \blacktriangleright Therefore Hx &Ey = 0 in the basic field equations
- Ez, Ex & Hy will have value

Hy =(C3sinhx+C4coshx)

- > The boundary condition can not be applied directly to Hy to evaluate C3 & C4
- Because Htan is not equal to zero at the perfect conductor \triangleright surface
- \succ Therefore Ez is obtained in terms of Hy and then the boundary condition is applied to Ez

- Boundary conditions are $E_{z=0}$ at x=0 and x=aEz=0 at y=0 and y=b
- After applying the B.C as for TE waves, we get C3=0 & $h=m\pi/a$

TM WAVES - FIELDS

WAVE FIELDS TM

 $F_z = -\frac{m\pi}{a} \frac{c_4}{jwe} \sin\left(\frac{m\pi}{a}\right) \times e^{-\overline{\gamma}z}$ $Hy = C4 \cos\left(\frac{m\pi}{a}\right) \times e^{-\overline{y}z}$ $E_{\mathcal{H}} = \overline{\mathcal{P}} \quad C_{\mathcal{H}} \quad c_{\mathcal{H}} \quad c_{\mathcal{H}} \quad (\frac{m\pi}{a})_{\mathcal{X}} \quad e^{-\overline{\mathcal{P}}Z}$ subs $\overline{\mathcal{P}} = \vec{\mathcal{F}}$ for wave propagation.

11/9/2023

TRANSVERSE ELECTRIC AND TRANSVERSE MAGNETIC WAVES/19EC502-TRANSMISSION LINES AND ANTENNAS/MUBARAALI L

