
Binary search tree



Binary Search Tree (BST)

6 November 2023 Binary search tree 2

• A Binary Search Tree (BST) is a tree in which all the nodes 
follow the below-mentioned properties :

• The left sub-tree of a node has a key less than or equal to its 
parent node's key.

• The right sub-tree of a node has a key greater than to its 
parent node's key.

• Thus, BST divides all its sub-trees into two segments; the left 
sub-tree and the right sub-tree and can be defined as −

 left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)



Representation

• BST is a collection of nodes arranged in a way where they 
maintain BST properties.

• Each node has a key and an associated value.

• While searching, the desired key is compared to the keys in 
BST and if found, the associated value is retrieved.

• From the figure we identify that left

subtree values are lesser than root

• The right subtree values are greater

than the root node.

6 November 2023 Binary search tree 3



Basic Operations of Binary search tree:

Following are the basic operations of a tree −

• Search − Searches an element in a tree.

• Insert − Inserts an element in a tree.

• Pre-order Traversal − Traverses a tree in a pre-order manner.

• In-order Traversal − Traverses a tree in an in-order manner.

• Post-order Traversal − Traverses a tree in a post-order manner.

Node

Define a node having some data, references to its left and right child nodes.

struct node 

{ 

int data; 

struct node *leftChild; 

struct node *rightChild; 

};

6 November 2023 Binary search tree 4



Search Operation
• Whenever an element is to be searched, start searching from the 

root node.
• Then if the data is less than the key value, search for the element in 

the left subtree.
• Otherwise, search for the element in the right subtree.
Algorithm
struct node* search(int data)
{ 
struct node *current = root;
printf("Visiting elements: "); 

while(current->data != data)
{
if(current != NULL)
{ 

printf("%d ",current->data);

6 November 2023 Binary search tree 5



if(current->data > data)
{ 
current = current->leftChild; 
}
else 
{ 
current = current->rightChild; 
} 
if(current == NULL)
{ 
return NULL; 
} 
}
} 

return current;
}

6 November 2023 Binary search tree 6



Insert Operation
• Whenever an element is to be inserted, first locate its proper 

location.

• Start searching from the root node.

• If the data is less than the key value, search for the empty 
location in the left subtree and insert the data.

• Otherwise, search for the empty location in the right subtree 
and insert the data.

Algorithm

void insert(int data)

{ 

struct node *tempNode = (struct node*) malloc(sizeof(struct node)); 

struct node *current;

struct node *parent;

6 November 2023 Binary search tree 7



tempNode->data = data; 
tempNode->leftChild = NULL;
tempNode->rightChild = NULL; 
if(root == NULL)
{ root = tempNode;
} 

else 
{ 
current = root; 
parent = NULL; 
while(1)
{ 

parent = current;
if(data < parent->data) 
{ 
current = current->leftChild; 
if(current == NULL) 
{ 
parent->leftChild = tempNode; 
return; 
}
}

6 November 2023 Binary search tree 8



else

{

current = current->rightChild;

if(current == NULL) 

{

parent->rightChild = tempNode; 

return;

} 

} 

} 

} 

} 

6 November 2023 Binary search tree 9


