

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(IoT and Cybersecurity Including BCT)

COURSE NAME : Fundamentals Of Cryptography

II YEAR / III SEMESTER

Unit III-Topic : Elagamal Algorithm

The El Gamal Algorithm provides an alternative to the RSA for public key encryption.

- 1) Security of the RSA depends on the (presumed) difficulty of factoring large integers.
- 2) 2) Security of the El Gamal algorithm depends on the (presumed) difficulty of computing discrete logs in a large prime modulus.

Idea of El Gamal cryptosystem:

Suppose Alice wants to communicate with Bob.

- 1.Bob generates public and private keys:
 - 1. Bob chooses a very large number **q** and a cyclic group \mathbf{F}_{q} .
 - 2. From the cyclic group \mathbf{F}_{q} , he choose any element \mathbf{g} and an element \mathbf{a} such that gcd(a, q) = 1.
 - 3. Then he computes $h = g^a$.
 - 4. Bob publishes **F**, **h** = g^a , **q**, and **g** as his public key and retains **a** as private key.

2. Alice encrypts data using Bob's public key :

- Alice selects an element k from cyclic group F such that gcd(k, q) = 1.
- 2. Then she computes $p = g^k$ and $s = h^k = g^{ak}$.
- 3. She multiples s with M.
- 4. Then she sends $(p, M^*s) = (g^k, M^*s)$.

3.Bob decrypts the message :

- 1. Bob calculates $s' = p^a = g^{ak}$.
- 2. He divides M^*s by s' to obtain M as s = s'.

Advantages:

•Security: ElGamal is based on the discrete logarithm problem, which is considered to be a hard problem to solve. This makes it secure against attacks from hackers.

•Key distribution: The encryption and decryption keys are different, making it easier to distribute keys securely. This allows for secure communication between multiple parties.
•Digital signatures: ElGamal can also be used for digital signatures, which allows for secure authentication of messages.

Disadvantages:

•Slow processing: ElGamal is slower compared to other encryption algorithms, especially when used with long keys. This can make it impractical for certain applications that require fast processing speeds.

•Key size: ElGamal requires larger key sizes to achieve the same level of security as other algorithms. This can make it more difficult to use in some applications.

•Vulnerability to certain attacks: ElGamal is vulnerable to attacks based on the discrete logarithm problem, such as the index calculus algorithm. This can reduce the security of the algorithm in certain situations.