SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
DEPARTMENT OF ECE
COURSE NAME: 19IT301 COMPUTER ORGANIZATION
AND ARCHITECTURE
II YEAR/ III SEM
Unit 2 : ARITHMETIC OPERATIONS
Topic 2: Design of Fast Adders

Computing the add time

Consider 0th stage:

${ }^{-C_{1}}$ is available after 2 gate delays.
$\cdot s_{1}$ is available after 1 gate delay.

Computing the add time

Cascade of 4 Full Adders, or a 4-bit adder

- s_{0} available after 1 gate delays, c_{1} available after 2 gate delays.
$\cdot s_{1}$ available after 3 gate delays, c_{2} available after 4 gate delays.
- s_{2} available after 5 gate delays, c_{3} available after 6 gate delays.
$\cdot s_{3}$ available after 7 gate delays, c_{4} available after 8 gate delays.
For an n-bit adder, s_{n-1} is available after $2 n-1$ gate delays c_{n} is available after $2 n$ gate delays.

Drawback of ripple carry adder

All sum bits are available in 2 n gate delays.

- Two approaches can be used to reduce delay in adders:

1) Use the fastest possible electronic technology in implementing the ripple-carry design.
2) Use an augmented logic-gate network structure.

Design of fast adders

Recall the equations:

$$
\begin{aligned}
& s_{i}=x_{i} \oplus y_{i} \oplus c_{i} \\
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
\end{aligned}
$$

Second equation can be written as:

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

We can write:

$$
\begin{aligned}
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& \text { where } G_{i}=x_{i} y_{i} \text { and } P_{i}=x_{i}+y_{i}
\end{aligned}
$$

- G_{i} is called generate function and P_{i} is called propagate functio
- $\quad G_{i}$ and P_{i} are computed only from x_{i} and y_{i} and not c_{i}, thus they can be computed in one gate delay after X and Y are applied to the inputs of an n-bit adder.

Carry-Lookahead Addition

$$
\begin{aligned}
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& c_{i}=G_{i-1}+P_{i-1} c_{i-1} \\
& \Rightarrow c_{i+1}=G_{i}+P_{i}\left(G_{i-1}+P_{i-1} c_{i-1}\right)
\end{aligned}
$$

continuing
$\Rightarrow c_{i+1}=G_{i}+P_{i}\left(G_{i-1}+P_{i-1}\left(G_{i-2}+P_{i-2} c_{i-2}\right)\right)$
until

$$
c_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} G_{i-2}+. .+P_{i} P_{i-1} . . P_{1} G_{0}+P_{i} P_{i-1} \ldots P_{0} c_{0}
$$

-All carries can be obtained 3 gate delays after X, Y and c_{0} are applied. -One gate delay for P_{i} and G_{i}
-Two gate delays in the AND-OR circuit for c_{i+1}
-All sums can be obtained 1 gate delay after the carries are computed. -Independent of n, n-bit addition requires only 4 gate delays.
-This is called Carry look-ahead adder.

Carry-Lookahead Adder

Example:				
$\mathrm{X}:$	1	1	0	1
$\mathrm{Y}:$	1	0	1	1
	1	1	0	0

Actually $P_{i}=x_{i}+y_{i}$ But, $P_{i}=x_{i} \oplus y_{i}$

Example

$$
\begin{aligned}
& s_{0}=x_{0} \oplus y_{0} \oplus c_{0}=1 \oplus 1 \oplus 0=0 \\
& c_{0}=0 \\
& G_{0}=x_{0} y_{0}=1.1=1 \\
& P_{0}=x_{0} \oplus y_{0}=1 \oplus 1=0 \\
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& c_{1}=G_{0}+P_{0} c_{0} \\
& c_{1}=1+0=1 \\
& s_{1}=x_{1} \oplus y_{1} \oplus c_{1}=0 \oplus 1 \oplus 1=0 \\
& c_{2}=G_{1}+P_{1} c_{1} \\
& =G_{1}+P_{1}\left(G_{0}+P_{0} c_{0}\right) \\
& c_{2}=G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
& G_{1}=x_{1} y_{1}=0.1=0 \\
& P_{1}=x_{1} \oplus y_{1}=0 \oplus 1=1 \\
& c_{2}=0+1.1+1.0 .0=1
\end{aligned}
$$

Truth table for OR

A	B	Q
0	0	0
0	1	1
1	0	1
1	1	1

Truth table for Ex-or

A	B	Q
0	0	0
0	1	1
1	0	1
1	1	0

Example(cntd)

$$
\begin{aligned}
& \mathrm{s}_{2}=\mathrm{x}_{2} \oplus \mathrm{y}_{2} \oplus \mathrm{c}_{2}=1 \oplus 0 \oplus 1=0 \\
& \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2} \\
& =G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0}\right) \\
& \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{c}_{0} \\
& \mathrm{G}_{2}=\mathrm{x}_{2} \mathrm{y}_{2}=1.0=0 \\
& P_{2}=x_{2} \oplus y_{2}=1 \oplus 0=1 \\
& c_{3}=0+1.0+1.1 \cdot 1+1.1 \cdot 0 \cdot 0=1 \\
& s_{3}=x_{3} \oplus y_{3} \oplus c_{3}=1 \oplus 1 \oplus 1=1 \\
& \mathrm{c}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{c}_{3} \\
& =G_{3}+P_{3}\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0}\right) \\
& c_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0} \\
& G_{3}=x_{3} y_{3}=1.1=1 \\
& P_{3}=x_{3} \oplus y_{3}=1 \oplus 1=0 \\
& \mathrm{C}_{4}=1+0.0+0.1 .0+0.1 .1 .1+0.1 .1 .0 .0=1+0+0+0+0
\end{aligned}
$$

Carry-Lookahead Adder

- Performing n-bit addition in 4 gate delays independent of n is good only theoretically because of fan-in constraints.
- Last AND gate and OR gate require a fan-in of ($n+1$) for a n-bit adder.
- For a 4-bit adder ($\mathrm{n}=4$) fan-in of 5 is required.
- Practical limit for most gates.
- In order to add operands longer than 4 bits, we can cascade 4-bit carry look-ahead adders.
- Cascade of carry look-ahead adders is called Blocked Carry lookahead adder.

Higher-level Generate \& Propagate Functions

Carry-out from a 4-bit block can be given as:

$$
\begin{aligned}
& c_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0} \\
& c_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

Rewrite this as:

$$
\begin{aligned}
& P_{0}^{I}=P_{3} P_{2} P_{1} P_{0} \\
& G_{0}^{I}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}
\end{aligned}
$$

Subscript I denotes the blocked carry look-ahead and identifies the block cascade 4 4-bit adders, c_{16} can be expressed as:

$$
c_{16}=G_{3}^{I}+P_{3}^{I} G_{2}^{I}+P_{3}^{I} P_{2}^{I} G_{1}^{I}+P_{3}^{I} P_{2}^{I} P_{1}^{0} G_{0}^{I}+P_{3}^{I} P_{2}^{I} P_{1}^{0} P_{0}^{0} c_{0}
$$

Blocked Carry Look-ahead adder

After x_{i}, y_{i} and c_{0} are applied as inputs:

- G_{i} and P_{i} for each stage are available after 1 gate delay.
- P^{\prime} is available after 2 and G^{\prime} after 3 gate delays.
- All carries are available after 5 gate delays.
- c_{16} is available after 5 gate delays.

Assessment

1. What distinguishes the look-ahead-carry adder?
a) It is slower than the ripple-carry adder
b) It is easier to implement logically than a full adder
c) It is faster than a ripple-carry adder
d) It requires advance knowledge of the final answer
2. Carry look-ahead logic uses the concepts of \qquad
a) Inverting the inputs
b) Complementing the outputs
c) Generating and propagating carries
d) Ripple factor

Assessment

3. What is one disadvantage of the ripple-carry adder?
a) The interconnections are more complex
b) More stages are required to a full adder
c) It is slow due to propagation time
d) All of the mentioned
4. The carry propagation delay in 4-bit full-adder circuits \qquad
a)Is cumulative for each stage and limits the speed at which arithmetic operations are performed
b)Is normally not a consideration because the delays are usually in the nanosecond range
c) Decreases in direct ratio to the total number of full-adder stages d) Increases in direct ratio to the total number of full-adder stages, but is not a factor in limiting the speed of arithmetic operations

-

(3II Sem / COA / UNIT - 2

\qquad
\square
\square
\qquad
\square

\qquad
\square

$9 / 30 / 2023$

$9 / 30 / 2023$

Thank You

