

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF ECE

COURSE NAME: 19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR/ III SEM Unit 2 : ARITHMETIC OPERATIONS

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

9/30/2023

Topic 2: Design of Fast Adders

9/30/2023

Computing the add time

Cascade of 4 Full Adders, or a 4-bit adder

- • s_0 available after 1 gate delays, c_1 available after 2 gate delays.
- • s_2 available after 5 gate delays, c_3 available after 6 gate delays.
- • s_3 available after 7 gate delays, c_4 available after 8 gate delays.

For an *n*-bit adder, s_{n-1} is available after 2*n*-1 gate delays c_n is available after 2n gate delays.

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

9/30/2023

• s_1 available after 3 gate delays, c_2 available after 4 gate delays.

All sum bits are available in 2n gate delays.

- Two approaches can be used to reduce delay in adders:
- 1) Use the fastest possible electronic technology in implementing the ripple-carry design.
- 2) Use an augmented logic-gate network structure.

Second equation can be written as:

$$c_{i+1} = x_i y_i + (.$$

We can write:

 $c_{i+1} = G_i + P_i c_i$ where $G_i = x_i y_i$ and $P_i = x_i + y_i$

- G_i and P_i are computed only from x_i and y_i and not c_i , thus they • can be computed in one gate delay after X and Y are applied to the inputs of an *n*-bit adder.

9/30/2023

 $(x_i + y_i)c_i$

 G_i is called generate function and P_i is called propagate function

Carry-Lookahead Addition $c_{i+1} = G_i + P_i c_i$ $c_i = G_{i-1} + P_{i-1}c_{i-1}$ $\Rightarrow c_{i+1} = G_i + P_i(G_{i-1} + P_{i-1}c_{i-1})$ continuing $\Rightarrow c_{i+1} = G_i + P_i(G_{i-1} + P_{i-1}(G_{i-2} + P_{i-2}c_{i-1}))$ until

 $C_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + ... + P_i P_{i-1}$

- •All carries can be obtained 3 gate delays after X, Y and c_0 are applied. -One gate delay for P_i and G_i -Two gate delays in the AND-OR circuit for c_{i+1} •All sums can be obtained 1 gate delay after the carries are computed.
- Independent of n, n-bit addition requires only 4 gate delays.
- •This is called Carry look-ahead adder.

$$..P_1G_0 + P_iP_{i-1}...P_0c_0$$

9/30/2023

Example $s_0 = x_0 \bigoplus y_0 \bigoplus c_0 = 1 \bigoplus 1 \bigoplus 0 = 0$

 $C_0 = 0$ $G_0 = x_0 y_0 = 1.1 = 1$ $\mathsf{P}_0 = \mathsf{x}_0 \oplus \mathsf{y}_0 = \mathsf{1} \oplus \mathsf{1} = \mathsf{0}$ $C_{i+1} = G_i + P_i C_i$ $C_1 = G_0 + P_0 C_0$ $C_1 = 1 + 0 = 1$

$$S_{1} = x_{1} \bigoplus y_{1} \bigoplus c_{1} = 0 \bigoplus 1 \bigoplus c_{2} = G_{1} + P_{1}c_{1}$$

= $G_{1} + P_{1}(G_{0} + P_{0}c_{0})$
 $C_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0}c_{0}$
 $G_{1} = x_{1}y_{1} = 0 .1 = 0$
 $P_{1} = x_{1} \bigoplus y_{1} = 0 \oplus 1 = 1$
 $c_{2} = 0 + 1.1 + 1.0.0 = 1$

9/30/2023

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

0 $\rightarrow 1 =$

Example(cntd)

- $s_2 = x_2 \bigoplus y_2 \bigoplus c_2 = 1 \bigoplus 0 \bigoplus 1 = 0$ $C_3 = G_2 + P_2 C_2$ $= G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0)$ $C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$ $G_2 = x_2y_2 = 1.0 = 0$ $P_2 = x_2 \bigoplus y_2 = 1 \bigoplus 0 = 1$ $C_3 = 0 + 1.0 + 1.1.1 + 1.1.0.0 = 1$
- $s_3 = x_3 \bigoplus y_3 \bigoplus c_3 = 1 \bigoplus 1 \bigoplus 1 = 1$ $C_4 = G_3 + P_3 C_3$ $= G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0)$ $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$ $G_3 = x_3 y_3 = 1.1 = 1$ $P_3 = x_3 \oplus y_3 = 1 \oplus 1 = 0$ $C_4 = 1 + 0.0 + 0.1.0 + 0.1.1.1 + 0.1.1.0.0$ =

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

9/30/2023

= 1 + 0 + 0 + 0 + 0

8/15

Carry-Lookahead Adder

- Performing n-bit addition in 4 gate delays independent of n is good only theoretically because of fan-in constraints.
 Last AND gate and OR gate require a fan-in of (n+1) for a n-bit
- Last AND gate and OR gate require a fan-in of (n+1) for a n-bit adder.
 - \circ For a 4-bit adder (n=4) fan-in of 5 is required.
 - Practical limit for most gates.
- In order to add operands longer than 4 bits, we can cascade 4-bit carry look-ahead adders.
- Cascade of carry look-ahead adders is called Blocked Carry lookahead adder.

Carry-out from a 4-bit block can be given as:

 $c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

 $C_3 = G_2 + P_2G_1 + P_2 P_1G_0 + P_2 P_1P_0C_0$ Rewrite this as:

$$P_0^I = P_3 P_2 P_1 P_0$$

$$G_0^I = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$$

Subscript I denotes the blocked carry look-ahead and identifies the block cascade 4 4-bit adders, c_{16} can be expressed as:

$$c_{16} = G_3^I + P_3^I G_2^I + P_3^I P_2^I G_1^I + R_3^I G_2^I + P_3^I P_2^I G_1^I + R_3^I G_2^I + R_3^I G_3^I +$$

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

 $P_{3}^{I}P_{2}^{I}P_{1}^{0}G_{0}^{I} + P_{3}^{I}P_{2}^{I}P_{1}^{0}P_{0}^{0}c_{0}$

After x_i , y_i and c_0 are applied as inputs:

- G_i and P_i for each stage are available after 1 gate delay.
- P' is available after 2 and G' after 3 gate delays.
- All carries are available after 5 gate delays.
- c_{16} is available after 5 gate delays.

9/30/2023

Assessment

1. What distinguishes the look-ahead-carry adder? a) It is slower than the ripple-carry adder b) It is easier to implement logically than a full adder c) It is faster than a ripple-carry adder d) It requires advance knowledge of the final answer

2. Carry look-ahead logic uses the concepts of

- a) Inverting the inputs
- b) Complementing the outputs
- c) Generating and propagating carries
- d) Ripple factor

Assessment

3. What is one disadvantage of the ripple-carry adder?

- a) The interconnections are more complex
- b) More stages are required to a full adder
- c) It is slow due to propagation time
- d) All of the mentioned

4. The carry propagation delay in 4-bit full-adder circuits _ a)Is cumulative for each stage and limits the speed at which arithmetic operations are performed

b)Is normally not a consideration because the delays are usually in the nanosecond range

c) Decreases in direct ratio to the total number of full-adder stages d)Increases in direct ratio to the total number of full-adder stages, but is not a factor in limiting the speed of arithmetic operations

9/30/2023

Answers

K.Sangeetha/AP/ECE / SNSCE / III Sem / COA / UNIT - 2

9/30/2023

14/15

Thank You

