
NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

1

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

COURSE NAME : 19CS307- DATA STRUCTURES

II YEAR / III SEMESTER

UNIT-IV

NON LINEAR DATA STRUCTURES – GRAPHS

GRAPHS

Definition

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed

as vertices, and the links that connect the vertices are called edges.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of

edges, connecting the pairs of vertices. Take a look at the following graph –

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

2

Components of a Graph

 Vertices: Vertices are the fundamental units of the graph. Sometimes, vertices are also

known as vertex or nodes. Every node/vertex can be labeled or unlabelled.

 Edges: Edges are drawn or used to connect two nodes of the graph. It can be ordered

pair of nodes in a directed graph. Edges can connect any two nodes in any possible way.

There are no rules. Sometimes, edges are also known as arcs. Every edge can be

labeled/unlabelled. Edges may be directed or undirected.

Example

Face book uses a graph data structure that consists of a group of entities and their

relationships. On Face book, every user, photo, post, page, place, etc. that has data is

represented with a node. Every edge from one node to another represents their

relationships, friendships, ownerships, tags, etc. Whenever a user posts a photo, comments

on a post, etc., a new edge is created for that relationship. Both nodes and edges have meta-

data associated with them.

Types of Graph

1. Undirected graph

An undirected graph (graph) is a graph in which edges have no orientation. The edge (x,

y) is identical to edge (y, x), i.e., they are not ordered pairs. The maximum number of

edges possible in an undirected graph without a loop is n×(n-1)/2.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

3

2. Directed graph

A Directed graph (digraph) is a graph in which edges have orientations, i.e., The edge (x,

y) is not identical to edge (y, x).

3. Directed Acyclic Graph (DAG)

A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles.

4. Multi graph

A multigraph is an undirected graph in which multiple edges (and sometimes loops) are

allowed. Multiple edges are two or more edges that connect the same two vertices. A loop

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

4

is an edge (directed or undirected) that connects a vertex to itself; it may be permitted or

not.

5. Simple graph

A simple graph is an undirected graph in which both multiple edges and loops are

disallowed as opposed to a multigraph. In a simple graph with n vertices, every vertex’s

degree is at most n-1.

6. Weighted and Unweighted graph

A weighted graph associates a value (weight) with every edge in the graph. We can also

use words cost or length instead of weight.

An unweighted graph does not have any value (weight) associated with every edge in the

graph. In other words, an un weighted graph is a weighted graph with all edge weight as 1.

Unless specified otherwise, all graphs are assumed to be un weighted by default.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

5

7. Complete graph

A complete graph is one in which every two vertices are adjacent: all edges that could exist

are present.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

6

8. Connected graph

A Connected graph has a path between every pair of vertices. In other words, there are no

unreachable vertices. A disconnected graph is a graph that is not connected.

Relationship between number of edges and vertices

For a simple graph with m edges and n vertices, if the graph is

 directed, then m = n×(n-1)

 undirected, then m = n×(n-1)/2

 connected, then m = n-1

Graph Terminology

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

7

 An edge is (together with vertices) one of the two basic units out of which graphs

are constructed. Each edge has two vertices to which it is attached, called

its endpoints.

 Two vertices are called adjacent if they are end points of the same edge.

 Outgoing edges of a vertex are directed edges that the vertex is the origin.

 Incoming edges of a vertex are directed edges that the vertex is the destination.

 The degree of a vertex in a graph is the total number of edges incident to it.

 In a directed graph, the out-degree of a vertex is the total number of outgoing

edges, and the in-degree is the total number of incoming edges.

 A vertex with in-degree zero is called a source vertex, while a vertex with out-

degree zero is called a sink vertex.

 An isolated vertex is a vertex with degree zero, which is not an endpoint of an edge.

 Path is a sequence of alternating vertices and edges such that the edge connects

each successive vertex.

 Cycle is a path that starts and ends at the same vertex.

Representation of Graph

There are two ways to store a graph:

 Adjacency Matrix

 Adjacency List

1. Adjacency Matrix

In this method, the graph is stored in the form of the 2D matrix where rows and columns

denote vertices. Each entry in the matrix represents the weight of the edge between those

vertices.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

8

2. Adjacency List

This graph is represented as a collection of linked lists. There is an array of pointer which

points to the edges connected to that vertex.

Basic Operations on Graphs

 Insertion of Nodes/Edges in the graph – Insert a node into the graph.

 Deletion of Nodes/Edges in the graph – Delete a node from the graph.

 Searching on Graphs – Search an entity in the graph.

 Traversal of Graphs – Traversing all the nodes in the graph.

https://media.geeksforgeeks.org/wp-content/uploads/20200630124726/adjacency_mat1.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200630125356/adjacency_list.jpg

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

9

Usage of graphs

1. Google maps uses graphs for building transportation systems, where intersection of

two(or more) roads are considered to be a vertex and the road connecting two

vertices is considered to be an edge, thus their navigation system is based on the

algorithm to calculate the shortest path between two vertices.

2. In Facebook, users are considered to be the vertices and if they are friends then

there is an edge running between them. Facebook’s Friend suggestion algorithm

uses graph theory. Facebook is an example of undirected graph.

3. In World Wide Web, web pages are considered to be the vertices. There is an edge

from a page u to other page v if there is a link of page v on page u. This is an

example of Directed graph. It was the basic idea behind Google Page Ranking

Algorithm.

4. In Operating System, we come across the Resource Allocation Graph where each

process and resources are considered to be vertices. Edges are drawn from

resources to the allocated process, or from requesting process to the requested

resource. If this leads to any formation of a cycle then a deadlock will occur.

Graph Traversal Technique in Data Structure

Graph traversal is a technique used for searching a vertex in a graph. The graph traversal is

also used to decide the order of vertices is visited in the search process. A graph traversal

finds the edges to be used in the search process without creating loops.

There are two graph traversal techniques

1. Breadth-first search

2. Depth-first search

Breadth-first search

Breadth-First Traversal (or Search) for a graph is similar to Breadth-First Traversal of a

tree

The only catch here is, that, unlike trees, graphs may contain cycles, so we may come to

the same node again. To avoid processing a node more than once, we divide the vertices

into two categories:

 Visited and

https://www.geeksforgeeks.org/page-rank-algorithm-implementation/
https://www.geeksforgeeks.org/page-rank-algorithm-implementation/
http://en.wikipedia.org/wiki/Breadth-first_search

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

10

 Not visited.

A boolean visited array is used to mark the visited vertices. For simplicity, it is assumed

that all vertices are reachable from the starting vertex. BFS uses a queue data

structure for traversal.

The purpose of the algorithm is to mark each vertex as visited while avoiding cycles.

The algorithm works as follows:

1. Start by putting any one of the graph's vertices at the back of a queue.

2. Take the front item of the queue and add it to the visited list.

3. Create a list of that vertex's adjacent nodes. Add the ones which aren't in the visited list to

the back of the queue.

4. Keep repeating steps 2 and 3 until the queue is empty.

The graph might have two different disconnected parts so to make sure that we cover every

vertex, we can also run the BFS algorithm on every node

BFS example

Let's see how the Breadth First Search algorithm works with an example. We use an

undirected graph with 5 vertices.

https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

11

Visit start vertex and add its adjacent vertices to queue

Next, we visit the element at the front of queue i.e. 1 and go to its adjacent nodes. Since 0

has already been visited, we visit 2 instead.

Visit the first neighbour of start node 0, which is 1

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the back of the queue and

visit 3, which is at the front of the queue.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

12

Visit 2 which was added to queue earlier to add its neighbors remains in the queue

4

Only 4 remains in the queue since the only adjacent node of 3 i.e. 0 is already visited. We

visit it.

Visit last remaining item in the queue to check if it has unvisited neighbors

Since the queue is empty, we have completed the Breadth First Traversal of the graph.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

13

BFS pseudo code/Routine

create a queue Q

mark v as visited and put v into Q

while Q is non-empty

remove the head u of Q

mark and enqueue all (unvisited) neighbours of u

BFS Algorithm Applications

1. To build index by search index

2. For GPS navigation

3. Path finding algorithms

4. In Ford-Fulkerson algorithm to find maximum flow in a network

5. Cycle detection in an undirected graph

6. In minimum spanning tree

Depth First Search (DFS)

Depth first Search or Depth first traversal is a recursive algorithm for searching all the

vertices of a graph or tree data structure. Traversal means visiting all the nodes of a graph.

Depth First Search Algorithm

A standard DFS implementation puts each vertex of the graph into one of two categories:

1. Visited

2. Not Visited

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/graph

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

14

The purpose of the algorithm is to mark each vertex as visited while avoiding cycles.

The DFS algorithm works as follows:

1. Start by putting any one of the graph's vertices on top of a stack.

2. Take the top item of the stack and add it to the visited list.

3. Create a list of that vertex's adjacent nodes. Add the ones which aren't in the visited list to

the top of the stack.

4. Keep repeating steps 2 and 3 until the stack is empty.

Depth First Search Example

Let's see how the Depth First Search algorithm works with an example. We use an

undirected graph with 5 vertices.

Undirected graph with 5 vertices

We start from vertex 0, the DFS algorithm starts by putting it in the Visited list and putting

all its adjacent vertices in the stack.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

15

Visit the element and put it in the visited list

Next, we visit the element at the top of stack i.e. 1 and go to its adjacent nodes. Since 0 has

already been visited, we visit 2 instead.

Visit the element at the top of stack

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and

visit it.

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and

visit it.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

16

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and

visit it.

After we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have

completed the Depth First Traversal of the graph.

After we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have

completed the Depth First Traversal of the graph.

DFS Pseudocode (recursive implementation)/Routine

The pseudocode for DFS is shown below. In the init() function, notice that we run the DFS

function on every node. This is because the graph might have two different disconnected

parts so to make sure that we cover every vertex, we can also run the DFS algorithm on

every node.

DFS(G, u)

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

17

 u.visited = true

 for each v ∈ G.Adj[u]

 if v.visited == false

 DFS(G,v)

init() {

 For each u ∈ G

 u.visited = false

 For each u ∈ G

 DFS(G, u)

}

Application of DFS Algorithm

1. For finding the path

2. For finding the strongly connected components of a graph

3. For detecting cycles in a graph

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

18

 BICONNECTIVITY

A connected undirected graph is biconnected if there are no vertices whose removal

discon- nects the rest of the graph.

ARTICULATION POINTS OR CUT VERTEX

The vertices whose removal would disconnect the graph are known as articulation points.

Connected Undirected Graph

Here the removal of ‘C’ vertex will disconnect G from the graph.

Similarly removal of ‘D’ vertex will disconnect E & F from the graph. Therefore ‘C’ & ‘D’

are articulation points.

B A

C D
F

E
G

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

19

 (a) Removal of vertex ‘C’

C

B A

D
F

E
G

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

20

D

 (b) Removal of vertex ‘D’

The graph is not biconnected, if it has articulation points.

Depth first search provides a linear time algorithm to find all articulation points in

a con- nected graph.

Steps to find Articulation Points :

Step 1 : Perform Depth first search, starting at any vertex

Step 2 : Number the vertex as they are visited, as Num (v).

Step 3 : Compute the lowest numbered vertex for every vertex v in the Depth first

spanning tree, which we call as low (w), that is reachable from v by

taking zero or more tree edges and then possibly one back edge. By

definition, Low(v) is the minimum of

(i) Num (v)

(ii) The lowest Num (w) among all back edges (v, w)

(iii) The lowest Low (w) among all tree edges (v, w)

Step 4 : (i) The root is an articulation if and only if it has more than two

children.

(ii) Any vertex v other than root is an articulation point if and only if v

has same child w such that Low (w) Num (v), The time taken to

compute this algorithm an a graph is 0 E + V .

F

E

B A

C

G

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

21

Note

For any edge (v, w) we can tell whether it is a tree edge or back edge merely by

checking

Num (v) and Num (w).

If Num (w) > Num (v) then the edge is a back edge.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

22

Tree edge (v, w)

v w

Num (v) = 1 Num (w) = 2

Back edge (w, v)

Fig. 4.8.3

void AssignLow (Vertex V)

{

Vertex W;

Low [V] = Num [V]; /* Rule 1 */

for each W adjacent to V

{

If (Num [W] > Num [V]) /* forward edge */

{

Assign Low (W);

If (Low [W]> = Num [V])

Printf (“% V is an articulation pt \n”, V);

Low[V] = Min (Low [V], Low[W]); /* Rule 3*/

}

else

if (parent [V] ! = W) /* Back edge */

Low [V] = Min (Low [V], Num [W])); /* Rule 2*/

}

}

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

23

ROUTINE TO COMPUTE LOW AND TEST FOR ARTICULATION POINTS

Depth First Tree With Num and Low.

Low can be computed by performing a postorder traversal of the depth - first spanning tree. (ie)

Low (F) = Min (Num (F), Num (D))

/* Since there is no tree edge & only one back edge */

= Min (6, 4) = 4

Low (F) = 4

Low (E) = Min (Num (E), Low (F))

/* there is no back edge */.

= Min (5, 4) = 4

Low (D) = Min (Num (D), Low (E), Num (A))

= Min (4,4,1) = 1

Low (D) = 1

Low (G) = Min (Num (G)) = 7 /* Since there is no tree edge & back edge */

Low (C) = Min (Num (C), Low (D), Low (G))

= Min (3,1,7) = 1

Low (C) = 1 .

lllly Low (B) = Min (Num (B), Low (C))

= Min (2,1) = 1

Low (A) = Min (Num (A), Low (B))

= Min (1, 1) = 1

Low (A) = 1.

A

(1/1)

B

(2/1)

C
(3/1)

D
(4/1)

G
 (7/7)

E
(5/4)

F
(6/4)

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

24

From fig (4.8) it is clear that Low (G) > Num (C) (ie) 7 > 3 /* if Low (W) Num (V)*/ the ‘v’ is

an articulation pt Therefore ‘C’ is an articulation point.

lllly Low (E) = Num (D), Hence D is an articulation point.

EULER’S CIRCUIT Euler path

A graph is said to be containing an Euler path if it can be traced in 1 sweep without

lifting the pencil from the paper and without tracing the same edge more than once. Vertices

may be passed through more than once. The starting and ending points need not be the

same.

Euler circuit

An Euler circuit is similar to an Euler path, except that the starting and ending points

must be the same.

It is interesting that Euler never published an algorithm for finding an Euler circuit,

but only provided a method of determining if one existed or not. In a note from Ed Sandifer

he states, “In his paper on the Konigsberg Bridge Problem, all he says about finding such

paths is that if you remove all double edges, then it will be easy to find a solution”.

Euler went on to generalize this mode of thinking, laying a foundation for graph

theory. Using modern vocabulary, we make the following definitions and prove at theorem:

Definition:

A network is a figure made up of points (vertices) connected by non-intersecting

curves (arcs).

Definition:

A vertex is called odd if it has an odd number of arcs leading to it, otherwise it is

called even.

Definition:

An Euler path is a continuous path that passes through every are once and only once.

Theorem:

If a network has more than two odd vertices, it does not have an Euler path.

Euler also proved this:

Theorem:

If a network has two or zero odd vertices, it has atleast one Euler path. In particular,

if a network has exactly two odd vertices, then its Euler paths can only start on one of the

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

25

odd vertices, and end on the other -- a type of Euler path called an Euler circuit.

Problem

The seven bridges of konigsberg

Figure 4.9

The river Pregel separates the city of Konigsberg into 4 separate regions and the
regions are connected by 7 bridges. In the summer evenings, the citizens of the country
would like to have a walk around the whole city. Some curious citizens wondered whether
it is possible to begin at one of the regions, cross each bridge exactly once and return to
the same starting point. Can the citizen’s suggestion be made possible?

Solution:

We can observe that each vertex has an odd number of edges. For example, vertex A
is of degree 5 and vertex B is of degree 3. Therefore the citizen’s suggestion is impossible.
As each edge can be used only once and all vertices are odd, it is impossible to re-enter
any vertex again after leaving it, and this makes starting and ending at the same point
impossible.

Problems

For each of the networks below, determine whether it has an Euler path. If it does,

find one.

Graph 1 Graph 2
Graph 3

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

26

Graph

Number of odd

vertices(vertices

connected to an odd

number of edges)

Number of even

vertices (vertices

connected to an

even number of

edges

What does the path contain?

(Euler path = P;

Euler circuit = C;

Neither = N)

1 0 10 C

2 0 6 C

3 2 6 P

4 2 4 P

5 4 1 N

6 8 0 N

From the above table, we can observe that:

1. A graph with all vertices being even contains an Euler circuit.

2. A graph with 2 odd vertices and some even vertices contains an Euler path.

3. A graph with more than 2 odd vertices does not contain any Euler path or circuit.

APPLICATIONS OF GRAPHS

1. Social network graphs: to tweet or not to tweet. Graphs that represent who knows

whom, who communicates with whom, who influences whom or other

relationships in socialstructures. An example is the twitter graph of who follows

whom. These can be used to determine how information flows, how topics become

hot, how communities develop, or even who might be a good match for who, or is

that whom.

2. Transportation networks. In road networks vertices are intersections and edges

are the road segments between them, and for public transportation networks

vertices are stops and edges are the links between them. Such networks are used by

many map programs such as Google maps, Bing maps and now Apple IOS 6 maps

(well perhaps without the public transport) to find the best routes between

locations. They are also used for studying traffic patterns, traffic light timings, and

many aspects of transportation.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

27

3. Utility graphs. The power grid, the Internet, and the water network are all

examples of graphs where vertices represent connection points, and edges the

wires or pipes between them. Analyzing properties of these graphs is very

important in understanding the reliability of such utilities under failure or attack, or

in minimizing the costs to build infrastructure that matches required demands.

4. Document link graphs. The best known example is the link graph of the web,

where each web page is a vertex, and each hyperlink a directed edge. Link graphs

are used, for example, to analyze relevance of web pages, the best sources of

information, and good link sites.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

28

5. Protein-protein interactions graphs. Vertices represent proteins and edges

represent interactions between them that carry out some biological function in the

cell. These graphs can be used, for example, to study molecular pathways—chains

of molecular interactions in a cellular process. Humans have over 120K proteins

with millions of interactions among them.

6. Network packet traffic graphs. Vertices are IP (Internet protocol) addresses and

edges are the packets that flow between them. Such graphs are used for analyzing

network security, studying the spread of worms, and tracking criminal or non-

criminal activity.

7. Scene graphs. In graphics and computer games scene graphs represent the logical or

spacial relationships between objects in a scene. Such graphs are very important in

the computer games industry.

8. Finite element meshes. In engineering many simulations of physical systems,

such as the flow of air over a car or airplane wing, the spread of earthquakes

through the ground, or the structural vibrations of a building, involve partitioning

space into discrete elements. The elements along with the connections between

adjacent elements forms a graph that is called a finite element mesh.

9. Robot planning. Vertices represent states the robot can be in and the edges the

possible transitions between the states. This requires approximating continuous

motion as a sequence of discrete steps. Such graph plans are used, for example, in

planning paths for autonomous vehicles.

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

29

10. Neural networks. Vertices represent neurons and edges the synapses between them.

Neural networks are used to understand how our brain works and how connections

change when we learn. The human brain has about 1011 neurons

Dijkstra's Algorithm

Dijkstra's algorithm allows us to find the shortest path between any two vertices of a graph.

It differs from the minimum spanning tree because the shortest distance between two vertices

might not include all the vertices of the graph.

How Dijkstra's Algorithm works

Dijkstra's Algorithm works on the basis that any subpath B -> D of the shortest path A ->

D between vertices A and D is also the shortest path between vertices B and D.

Each subpath is the shortest path

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

30

Djikstra used this property in the opposite direction i.e we overestimate the distance of each

vertex from the starting vertex. Then we visit each node and its neighbors to find the shortest

subpath to those neighbors.

The algorithm uses a greedy approach in the sense that we find the next best solution hoping that

the end result is the best solution for the whole problem.

Example of Dijkstra's algorithm

It is easier to start with an example and then think about the algorithm.

Start with a weighted graph

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

31

Choose a starting vertex and assign infinity path values to all other devices

Go to each vertex and update its path length

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

32

If the path length of the adjacent vertex is lesser than new path length, don't update it

Avoid updating path lengths of already visited vertices

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

33

After each iteration, we pick the unvisited vertex with the least path length. So we choose 5

before 7

Notice how the rightmost vertex has its path length updated twice

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

34

Repeat until all the vertices have been visited

Djikstra's algorithm pseudocode

We need to maintain the path distance of every vertex. We can store that in an array of size v,

where v is the number of vertices.

We also want to be able to get the shortest path, not only know the length of the shortest path.

For this, we map each vertex to the vertex that last updated its path length.

Once the algorithm is over, we can backtrack from the destination vertex to the source vertex to

find the path.

A minimum priority queue can be used to efficiently receive the vertex with least path distance.

function dijkstra(G, S)

 for each vertex V in G

 distance[V] <- infinite

 previous[V] <- NULL

 If V != S, add V to Priority Queue Q

 distance[S] <- 0

 while Q IS NOT EMPTY

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

35

 U <- Extract MIN from Q

 for each unvisited neighbour V of U

 tempDistance <- distance[U] + edge_weight(U, V)

 if tempDistance < distance[V]

 distance[V] <- tempDistance

 previous[V] <- U

 return distance[], previous[]

Prim's Algorithm

Prim's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the

subset of the edges of that graph which

 form a tree that includes every vertex

 has the minimum sum of weights among all the trees that can be formed from the graph

How Prim's algorithm works

It falls under a class of algorithms called greedy algorithms that find the local optimum in the

hopes of finding a global optimum.

We start from one vertex and keep adding edges with the lowest weight until we reach our goal.

The steps for implementing Prim's algorithm are as follows:

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree

3. Keep repeating step 2 until we get a minimum spanning tree

Example of Prim's algorithm

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree#minimum-spanning
https://www.programiz.com/dsa/greedy-algorithm

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

36

Start with a weighted graph

Choose a vertex

Choose the shortest edge from this vertex and add it

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

37

Choose the nearest vertex not yet in the solution

Choose the nearest edge not yet in the solution, if there are multiple choices, choose one at

random

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

38

Repeat until you have a spanning tree

Prim's Algorithm pseudocode

The pseudocode for prim's algorithm shows how we create two sets of vertices U and V-U. U

contains the list of vertices that have been visited and V-U the list of vertices that haven't. One

by one, we move vertices from set V-U to set U by connecting the least weight edge.

T = ∅;

U = { 1 };

while (U ≠ V)

 let (u, v) be the lowest cost edge such that u ∈ U and v ∈ V - U;

 T = T ∪ {(u, v)}

 U = U ∪ {v}

Kruskal's Algorithm

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds

the subset of the edges of that graph which

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree#minimum-spanning

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

39

 form a tree that includes every vertex

 has the minimum sum of weights among all the trees that can be formed from the graph

How Kruskal's algorithm works

It falls under a class of algorithms called greedy algorithms that find the local optimum in the

hopes of finding a global optimum.

We start from the edges with the lowest weight and keep adding edges until we reach our goal.

The steps for implementing Kruskal's algorithm are as follows:

1. Sort all the edges from low weight to high

2. Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a

cycle, then reject this edge.

3. Keep adding edges until we reach all vertices.

Example of Kruskal's algorithm

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

40

Start with a weighted graph

Choose the edge with the least weight, if there are more than 1, choose anyone

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

41

Choose the next shortest edge and add it

Choose the next shortest edge that doesn't create a cycle and add it

Choose the next shortest edge that doesn't create a cycle and add it

NON LINEAR STRUCTURES / 19CS307 - DATA STRUCTURES /MS.M.SUGUNA/CSE/SNSCE

42

Repeat until you have a spanning tree

Kruskal Algorithm Pseudocode

Any minimum spanning tree algorithm revolves around checking if adding an edge creates a

loop or not.

The most common way to find this out is an algorithm called Union FInd. The Union-Find

algorithm divides the vertices into clusters and allows us to check if two vertices belong to the

same cluster or not and hence decide whether adding an edge creates a cycle.

KRUSKAL(G):

A = ∅

For each vertex v ∈ G.V:

 MAKE-SET(v)

For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v):

 if FIND-SET(u) ≠ FIND-SET(v):

 A = A ∪ {(u, v)}

 UNION(u, v)

return A

https://www.cs.duke.edu/courses/cps100e/fall09/notes/UnionFind.pdf

	Components of a Graph
	2. Directed graph
	3. Directed Acyclic Graph (DAG)
	4. Multi graph
	5. Simple graph
	6. Weighted and Unweighted graph
	7. Complete graph
	8. Connected graph

	Relationship between number of edges and vertices
	1. Adjacency Matrix
	2. Adjacency List

	Basic Operations on Graphs
	Graph Traversal Technique in Data Structure
	There are two graph traversal techniques
	BFS example
	BFS pseudo code/Routine
	BFS Algorithm Applications

	Depth First Search (DFS)
	Depth First Search Algorithm
	Depth First Search Example
	DFS Pseudocode (recursive implementation)/Routine
	Application of DFS Algorithm

	BICONNECTIVITY
	ARTICULATION POINTS OR CUT VERTEX
	Connected Undirected Graph
	(a) Removal of vertex ‘C’
	(b) Removal of vertex ‘D’
	Steps to find Articulation Points :
	Note
	Fig. 4.8.3
	Depth First Tree With Num and Low.
	EULER’S CIRCUIT Euler path
	Euler circuit
	Definition:
	Definition: (1)
	Definition: (2)
	Theorem:
	Euler also proved this:
	Problem
	Figure 4.9
	Solution:
	Problems
	APPLICATIONS OF GRAPHS

	Dijkstra's Algorithm
	It differs from the minimum spanning tree because the shortest distance between two vertices might not include all the vertices of the graph.
	How Dijkstra's Algorithm works
	Example of Dijkstra's algorithm
	Djikstra's algorithm pseudocode

	Prim's Algorithm
	How Prim's algorithm works
	Example of Prim's algorithm
	Prim's Algorithm pseudocode

	Kruskal's Algorithm
	How Kruskal's algorithm works
	Example of Kruskal's algorithm
	Kruskal Algorithm Pseudocode

