

**SNS COLLEGE OF ENGINEERING** 

Kurumbapalayam (Po), Coimbatore - 641 107



AN AUTONOMOUS INSTITUTION

# ASTABLE MULTIVIBRATOR

## IC 555 Timer as Multivibrator

The 555 can operate in either mono/bi-stable or astable mode, depending on the connections to and the arrangement of the external components. Thus, it can either produce a single pulse when triggered, or it can produce a continuous pulse train as longas it remains powered.

### Astable multivibrator

These circuits are not stable in any state and switch outputs after predetermined time periods. The result of this is that the output is a continuous square/rectangular wave with the properties depending on values of external resistors and capacitors. Thus, while designing these circuits following parameters need to be determined:

- 1. Frequency (or the time period) of the wave.
- 2. The duty cycle of the wave.



Referring to the above figure of a rectangular waveform, the time period of the pulse is defined as T and duration of the pulse (ON time) is  $\tau$ . Duty cycle can be defined as the On time/Period that is,  $\tau/T$  in the above figure. Obviously, a duty cycle of 50% will yield a square wave.

The key external component of the **astable timer** is the *capacitor*. An astable multivibrator can be designed as shown in the circuit diagram (with typical component values) using IC 555, for a duty cycle of more than 50%. The corresponding voltage across the capacitor and voltage at output is also shown. The astable function is achieved by charging/discharging a capacitor through resistors connected, respectively, either toV<sub>CC</sub> or GND. Switching between the charging and discharging modes is handled by

resistor divider R1-R3, two Comparators, and an RS Flip-Flop in IC 555. The upper or lower comparator simply generates a positive pulse if  $V_C$  goes above 2/3  $V_{CC}$  or below1/3  $V_{CC}$ . And these positive pulses either SET or RESET the Q output.

The time for charging C from 1/3 to 2/3 Vcc, i.e, **ON Time = 0.693 (R<sub>A</sub> + R<sub>B</sub>). C** The time for discharging C from 2/3 to 1/3 Vcc, i.e. **OFF Time = 0.693 R<sub>B</sub>. C** To get the total oscillation period, just add the two:

 $T_{osc} = 0.693 \cdot (R_A + R_B) \cdot C + 0.693 \cdot (R_B) \cdot C = 0.693 \cdot (R_A + 2 \cdot R_B) \cdot C$ 

Thus,

 $f_{osc} = 1/T_{osc} = 1.44/(R_A + 2 \cdot R_B).C$ Duty cycle =  $R_A + R_B/R_A + 2 \cdot R_B$ 

**Circuit Diagram:** 



#### Astable multivibrator with duty cycle less than 50%:

Generally astable mode of IC 555 is used to obtain the duty cycle between 50 to 100%. But for a duty cycle less than 50%, the circuit can be modified as per the circuit diagram. Here a diode D1 is connected between the discharge and threshold terminals (as also across  $R_B$ ). Thus the capacitor now charges only through  $R_A$  (since  $R_B$  is shorted by diode conduction during charging) and discharges through  $R_B$ . Another optional diode D2 is also connected in series with  $R_B$  in reverse direction for better shorting of  $R_B$ . Therefore, the frequency of oscillation and duty cycle are

$$f_{osc} = 1/T_{osc} = 1.44/(R_A + R_B).C$$

**Duty Cycle = 
$$R_A / (R_A + R_B)$$**

#### **Circuit Diagram:**



Astable multivibrator with duty cycle variable from 0 to 100%:

In some applications, it is needed to vary the duty cycle from about 0 to 100%. In thatcase the circuit is designed as shown in the circuit diagram. Here a potentiometer,  $R_X$ , is used so that  $R_A = R_1+R_2$ ,  $R_B = R_X-R_2+R_3$ . A diode is now connected across a variable  $R_B$ . Thus a variable duty cycle is achieved. Therefore, the frequency of oscillation and duty cycle can be derived as follows.

 $f_{osc} = 1/T_{osc} = 1.44/(R_A + R_B).C = 1.44/(R_1 + R_X + R_3).C$ 

Min. Duty Cycle =  $R_1/(R_1 +$ 

 $\mathbf{R}_{\mathbf{X}} + \mathbf{R}_{\mathbf{3}}$ ) Max. Duty Cycle = ( $\mathbf{R}_{\mathbf{1}}$ 

$$+ \mathbf{R}_{\mathbf{X}})/(\mathbf{R}_{1} + \mathbf{R}_{\mathbf{X}} + \mathbf{R}_{3})$$

**Circuit Diagram:** 

