
UNIT
PROCESSOR AND PIPELINING

Fundamental concepts – Execution of a
organization – Hardwired control – Micro programmed
concepts – Data hazards – Instruction hazards
Data path and control consideration.

UNIT III
PROCESSOR AND PIPELINING

complete instruction – Multiple bus
programmed control – Pipelining: Basic

hazards – Influence on Instruction sets –

Recap the previous Class

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Recap the previous Class

18-10-2022

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• Hazards are the conditions that hinder seamless instruction execution through
pipeline stages

• Pipeline hazards prevent next instruction from executing during designated
clock cycle

• There are 3 types of hazards:
– Structural Hazards:

• hardware can’t support a particular sequence of instructions (due to lack of resources)
– Data Hazards:

• an instruction depends on a prior instruction (to produce its result) still in execution
E.g., lw followed by an add instruction using the loaded value

– Control Hazards:
• can’t decide if this instruction should be executed due to a prior branch instruction in

execution

18-10-2022

Pipelining hazards
are the conditions that hinder seamless instruction execution through

prevent next instruction from executing during designated

hardware can’t support a particular sequence of instructions (due to lack of resources)

an instruction depends on a prior instruction (to produce its result) still in execution
E.g., lw followed by an add instruction using the loaded value

can’t decide if this instruction should be executed due to a prior branch instruction in

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

How do

• Often, pipeline must be stalled
• Stalling pipeline usually lets some instruction(s) in pipeline

proceed, another/others wait for data, resource, etc.

 Hardware approach – pipeline “interlock”
•Detection: continuously check conditions that lead to a hazard

•Treatment: insert a “bubble” in the pipeline to delay

instruction execution such that the condition disappears

•The bubble is also called “pipeline stall”

18-10-2022

do we deal with hazards?

usually lets some instruction(s) in pipeline
proceed, another/others wait for data, resource, etc.

pipeline “interlock”
continuously check conditions that lead to a hazard

insert a “bubble” in the pipeline to delay

instruction execution such that the condition disappears

“pipeline stall”

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

How do
 Software approach

•Detection: compiler inspects the generated code and sees if

there is an instruction sequence that will lead to a pipeline

hazard

•Treatment: insert a “NOP” instruction to avoid the hazard

condition

•Compiler must have knowledge about the hardware (pipeline)

18-10-2022

we deal with hazards?

compiler inspects the generated code and sees if

there is an instruction sequence that will lead to a pipeline

insert a “NOP” instruction to avoid the hazard

Compiler must have knowledge about the hardware (pipeline)

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Stalls

• Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle

• Pipelining can be viewed to:
– Decrease CPI or clock cycle time for instruction

• CPI pipelined =
– Ideal CPI + Pipeline stall cycles per instruction
– 1 + Pipeline stall cycles per instruction

18-10-2022

Stalls and performance

Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle

Pipelining can be viewed to:
Decrease CPI or clock cycle time for instruction

Ideal CPI + Pipeline stall cycles per instruction
1 + Pipeline stall cycles per instruction

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Stalls

• Ignoring overhead and assuming

• If no stalls, speedup equal to # of pipeline stages in
ideal case

18-10-2022

and performance

assuming stages are balanced:

If no stalls, speedup equal to # of pipeline stages in

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Structural

• Avoid structural hazards by duplicating resources

– e.g. an ALU to perform an arithmetic operation and an adder to

increment PC

• If not all possible combinations of instructions can be executed,

structural hazards occur

• Pipelines stall result of hazards, CPI increased from the usual

“1”
18-10-2022

Structural hazards

Avoid structural hazards by duplicating resources

e.g. an ALU to perform an arithmetic operation and an adder to

If not all possible combinations of instructions can be executed,

Pipelines stall result of hazards, CPI increased from the usual

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

An exampleALU

RegMem DMALU

RegMem

RegMem

Mem

Time

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

What’s the problem here?
18-10-2022

example of a structural hazard

Reg

DM RegALU

DM RegALU

Reg DM RegALU

RegMem DM Reg

here?

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

How

Time

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble

Pipeline generally stalled

ALU

RegMem DMALU

RegMem

RegMem

18-10-2022

How is it resolved?ALU

RegMem DM Reg

Bubble Bubble Bubble Bubble

stalled byinserting a “bubble” or NOP

Reg

DM RegALU

DM Reg

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Or

Inst. # 1 2 3 4

LOAD IF ID EX MEM

Inst. i+1 IF ID EX

Inst. i+2 IF ID

Inst. i+3 stall

Inst. i+4

Inst. i+5

Inst. i+6

Clock

• LOAD instruction “steals” an instruction fetch cycle which will
cause the pipeline to stall.

• Thus, no instruction completes on clock cycle 8
18-10-2022

alternatively…

5 6 7 8 9 10

WB

MEM WB

EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

Clock Number

LOAD instruction “steals” an instruction fetch cycle which will

Thus, no instruction completes on clock cycle 8

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

• Why do they exist???

– Pipelining changes when data operands are read, written

– Order differs from order seen by sequentially executing

instructions on un-pipelined machine

• Consider this example:
– ADD R1, R2, R3
– SUB R4, R1, R5
– AND R6, R1, R7
– OR R8, R1, R9
– XOR R10, R1, R11 This

18-10-2022

Data hazards

Pipelining changes when data operands are read, written

Order differs from order seen by sequentially executing

pipelined machine
All instructions after ADD use
result of ADD

ADD writes the register in WB
but SUB needs it in ID.

This is a data hazard

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Illustrating

Time
ADD instruction causes a hazard in next 3 instructions b/c register
not written until after those 3 read it.

RegMem

Mem

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

CC 1 CC 2

18-10-2022

Illustrating a data hazard

ADD instruction causes a hazard in next 3 instructions b/c register
not written until after those 3 read it.

ALU

DM RegALU

Reg DM RegALU

RegMem DM

RegMem

ALU

RegMem

CC 3 CC 4 CC 5 CC 6

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Forwarding
• Can we move the result from EX/MEM register to the

beginning of ALU (where SUB needs it)?

– Yes!

• Generally speaking:

– Forwarding occurs when a result is passed directly to

functional unit that requires it.

– Result goes from output of one unit to input of another

18-10-2022

Forwarding
Can we move the result from EX/MEM register to the

beginning of ALU (where SUB needs it)?

Forwarding occurs when a result is passed directly to

functional unit that requires it.

Result goes from output of one unit to input of another

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

WhenALU

RegMem

Reg

Time

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Rule of thumb: If line
If its

Mem

Mem

Mem

18-10-2022

When can we forward?
DM RegALU

D
M

RegALU

Reg DM

Reg

ALU

Reg

SUB gets info.
from EX/MEM
pipe register

AND gets info.
from MEM/WB
pipe register

OR gets info. by
forwarding from
register file

line goes “forward” you can do forwarding.
If its drawn backward, it’s physically impossible.

Mem

Mem

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Forwardin

Can’t get data to subtract b/c result needed at beginning of
CC #4, but not produced until end of CC #4.

ALU

RegIM

RegIM

IM

Time

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

18-10-2022

ding doesn’t always work

Can’t get data to subtract b/c result needed at beginning of
CC #4, but not produced until end of CC #4.

DM RegALU

DMALU

Reg

RegIM

Load has a latency that
forwarding can’t solve.

Pipeline must stall until
hazard cleared (starting
with instruction that
wants to use data until
source produces it).

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

The

RegIM

IM

Time

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Insertion of bubble causes # of cycles to complete this sequence to
grow by 1

18-10-2022

The solution pictoriallyALU

DM Reg

Reg

IM

Bubble

Bubble

Bubble

ALU

Reg

RegIM

ALU

DM

Insertion of bubble causes # of cycles to complete this sequence to

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Branch

• So far, we’ve limited discussion of hazards
– Arithmetic/logic operations
– Data transfers

• Also need to consider hazards
– Example:

40: beq $1, $3, 28 # (28 leads to address 72)
44: and $12, $2, $5
48: or $13, $6, $2
52: add $14, $2, $2
72: lw $4, 50($7)

• How long will it take before the branch decision takes effect?
– What happens in the meantime?

18-10-2022

Branch / Control Hazards

limited discussion of hazards to:

hazards involving branches:

(28 leads to address 72)

How long will it take before the branch decision takes effect?

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

How branches
pipelined

• How
– We’ll

18-10-2022

• If branch condition true, must

skip 44, 48, 52

– But, these have already

started down the pipeline

– They will complete unless

we do something about it

How branches impact
pipelined instructions

do we deal with this?
We’ll consider 2 possibilities

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Dealing

• Branch taken
– Wait 3 cycles
– No proper instructions in the pipeline
– Same delay as without stalls (no time

18-10-2022

g w/branch hazards:
always stall

the pipeline
time lost)

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Dealing
• Branch not taken

– Still must wait 3 cycles
– Time lost
– Could have spent CCs fetching, decoding

18-10-2022

g w/branch hazards:
always stall

decoding next instructions

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

Dealing
• On average, branches are taken

– If branch not taken…

• Continue normal processing

– Else, if branch is taken…

• Need to flush improper instruction from

• One approach:

– Always assume branch will NOT

• Cuts overall time for branch processing in

– If prediction is incorrect, just flush the
18-10-2022

Dealing w/branch hazards
are taken ½ the time

flush improper instruction from pipeline

will NOT be taken

processing in ½

flush the pipeline

18-10-2022

TEXT BOOK
Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, McGraw
Edition 2012.

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, MorganKauffman ,Elsevier, 5th edition, 2014.

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

Courtesy :

REFERENCES

University of Pittsburgh

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, McGraw-Hill, 6th

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, MorganKauffman ,Elsevier, 5th edition, 2014.

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

THANK YOU

Dr.B.Anuradha / ASP / CSE / SEM 3 / COA

