DOWNLOADED FROM STUCOR APP

FUNDAMENTAL THEOREM OF ARITHMETIC

Theorem: (The Fundamental theorem of Arithmetic)

Statement:

Every integer $n \ge 2$ either is a prime or can be expressed as a product of primes. The factorization into primes is unique except for the order of the factors.

Proof:

First, we will show by strong induction that n either is a prime or can be expressed as a product of primes. Then we will establish the uniqueness of such a factorization.

Let P(n) denote the statement that n is a prime or can be expressed as a product of primes.

To show that P(n) is true for every integer $n \ge 2$.

Since 2 is a prime, clearly P(2) is true.

Now assume P(2),P(3),...,P(k) are true; that is, every integer ≥ 2 through k either is a prime or can be expressed as a product of primes.

If k + 1 is a prime, then P(k + 1) is true.

Suppose k + 1 is composite.

Then k + 1 = ab for some integers a and b, where 1 < a, b < k + 1.

By the inductive hypothesis, a and b either are primes or can be expressed as products of primes.

In any event, k + 1 = ab can be expressed as a product of primes.

Thus, P(k + 1) is also true. Thus, by strong induction, the result holds for every integer $n \ge 2$.

.

DOWNLOADED FROM STUCOR APP

To establish the uniqueness of the factorization:

Let n be a composite number with two factorizations into primes.

$$n = p_1 p_2 p_3 \dots p_r = q_1 q_2 q_3 \dots q_s$$

We will show that r = s and every p_i equals some q_j , where $1 \le i, j \le r$;

that is, the primes $q_1.q_2.q_3...q_s$ are a permutation of the primes $n=p_1.p_2.p...p_r$.

Assume, for convenience, that r < s.

Since, $p_1.p_2.p_3...p_r = q_1.q_2.q_3...q_s$. But p_1 must divide some q_i .

(i.e) $p_1 \mid q_1, q_2, q_3, \dots, q_s$, and p_1 is prime. p_1 must divide some q_i

 $\Rightarrow p_1 = q_i$ as they are primes.

Dividing both sides by p_1 , we get, $p_2.p_3...p_r = q_1.q_2.q_3...q_{j-1}.q_{j+1}...q_s$.

Repeat this argument with $p_2.p_3...p_r$.

Since r < s, we get 1= a product of q' s.

 \Rightarrow 1 = a product of primes.

Which is a contradiction.

Therefore, our assumption r < s is wrong $\Rightarrow r \ge s$. (1)

Similarly, if
$$s < r \Rightarrow s \ge r$$
. (2)

For (1) and (2), r = s.

Thus, the factorization is unique, except for the order of the factors.

DOWNLOADED FROM STUCOR APP

CANONICAL DECOMPOSITION

Canonical Decomposition

Definition: A canonical decomposition of any positive integer n is of the form $n=p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$, where $p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$ are distinct primes.

Example 1: Find the canonical decomposition of 4312.

Solution: $4312 = 2 \cdot 2 \cdot 2 \cdot 7 \cdot 7 \cdot 11 = 2^3 \cdot 7^2 \cdot 11^1$

Example 2: Find the canonical decomposition of 2520.

Solution: $2520 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 7 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{1}$

Example 3: Find the (72, 108) using canonical decomposition.

Solution:

$$72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^{3} \cdot 3^{2}$$
$$108 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = 2^{2} \cdot 3^{3}$$

 $(72, 108) = 2^2 3^2 = 4 * 9 = 36.$

Example 4: Using recursion, evaluate (18, 30, 60, 75, 132).

Solution:

$$(18, 30, 60, 75, 132) = ((18, 30, 60, 75), 132)$$

$$= (((18, 30, 60), 75), 132)$$

$$= ((((18, 30), 60), 75), 132)$$

$$= (((6, 60), 75), 132)$$

$$= ((6, 75), 132)$$

$$= (3, 132) = 3.$$