PRIME AND COMPOSITE NUMBERS

View the lecture on YouTube: https://youtu.be/6So-0z4zsx4

View motivational speech from Adam Spencer on YouTube to understand the nature of prime numbers: https://youtu.be/B4x0Fsygwr4

Definition: Any positive integer > 1 is prime if and only if its factors are 1 and itself, and the positive integer that is not prime is called composite number.

If x is a positive real number then $\pi(x)$ denotes the number of primes $\leq x$.

Theorem 1: Every integer $n \ge 2$ has a prime factor.

Proof: This proof involves strong induction.

For n=2, the statement is true since 2 is a prime number. Assume that all integers between 2 and $k(2 \le x \le k)$ has a prime factor.

TPT the integer k + 1 also has a prime factor

- (i) If k + 1 is prime then it is a factor of itself
- (ii) If k+1 is not prime then k+1 has factors between $2 \le x \le k \Longrightarrow (k+1)$ has a prime factor.

Hence by induction all integers $n \ge 2$ has a prime factor.

Theorem 2: Prove that there are infinitely many primes.

Proof: Assume the contradiction, that is there is only a finite number of primes i.e., $p_1, p_2, p_3 \dots p_n$

Now, consider an integer $N=p_1p_2p_3\dots p_n+1$ since $N\geq 2$, NN\$ is divisible by some prime $p_i, 0\leq i\leq n$.

Since
$$p_i/N \Rightarrow p_i/(p_1p_2p_3\dots p_n)$$

$$\Rightarrow p_i/(N-p_1p_2p_3\dots p_n) = p_i/1.$$

which is a contradiction that it is divided by only one term.

Hence the assumption is false.

⇒There are infinitely many primes.

Theorem 3: Prove that there are infinitely many prime of the form 4 n + 3.

Proof: To prove this assume the contradiction. i.e., there are only finite number of primes of the form 4 n + 3 and let them be $p_1, p_2, p_3 \dots p_n$.

Let
$$N = 4(p_1 p_2 p_3 \dots p_n) - 1$$
, then $N \equiv -1 \pmod{4} \implies N \equiv 3 \pmod{4}$.

Let the prime factorization of N be given as $N=q_1q_2q_3\dots q_l$.

Since *N* is odd $\Rightarrow q_1, q_2, q_3 \dots q_l$ are all odd.

Note that any q_i satisfies one of the residues

 $q_i \equiv 1 \pmod{4}, q_i \equiv 2 \pmod{4}, q_i \equiv 3 \pmod{4}, q_i \equiv 0 \pmod{4}.$

Since q_i is odd, $q_i \equiv 2 \pmod{4}$, $q_i \equiv 0 \pmod{4}$.is not possible.

Therefore, we have $q_i \equiv 1 \pmod{4}$ or $q_i \equiv 3 \pmod{4}$.

Claim 1: At lease for one i, $q_i \equiv 3 \pmod{4}$.

To prove this claim assume the contrary that $q_i \equiv 1 (mod 4)$ for each $i=1,2,\dots l$.

 $q_1 q_2 q_3 \dots q_l \equiv 1.1.1 \dots 1 \pmod{4}$

 $N \equiv 1 (mod 4)$, which is a contradiction. Hence the claim.

Claim 2: q_i is different from each of $p_1, p_2, p_3 \dots p_n$.

To prove this assume the contradiction, ie., $q_i = p_j$ for some j.

Therefore, $p_i/(4p_1p_2p_3...p_n) \Rightarrow p_i/(N+1)$ by definition of N_*

 $\Rightarrow q_i/N \Rightarrow p_i/N$, since $q_i = p_i$.

Now, $p_i/(N+1)$ and $p_i/N \Rightarrow p_i/N + 1 - N \Rightarrow p_i/1$ which

is contradiction that p_i is prime. Hence the Claim.

Claim 1 and 2 contradicts the assumption that there are finite number of prime.

Hence, there are infinitely many primes.

Theorem 4: For every positive integer n there are n consecutive integers that are composite.

Proof: Consider a n consecutive integers of the form

$$(n+1)! + 2$$
, $(n+1)! + 3$, $(n+1)! + n + 1$.

For any integer k,

such that $2 \le k \le n+1$ and by previous theorem, we have k/(n+1)! and also k/k, therefore k/(n+1)! + k for every k.

 \Rightarrow each of them is composite.

Theorem 5: Every composite number n has a prime factor $\leq \sqrt{n}$.

Proof: Consider a composite number n. Then n can be written as a product of integers.

So for $a, b \in N$, let n = ab be the composite number.

If suppose $a > \sqrt{n}$, $b > \sqrt{n}$, then n = a $b > \sqrt{n}\sqrt{n} > n$, which is a contradiction.

Therefore, $a \leq \sqrt{n}$, $b \leq \sqrt{n}$.

We know that, every positive integer ≥ 2 has a prime factor. Any such factor of a or b is also a factor of ab = n. So n must have a prime factor.

Important Results:

1. Let $p_1, p_2, p_3 \dots p_t$ be the prime $\leq \sqrt{n}$, then

$$\pi(n) = n - 1 + \pi(\sqrt{n}) - \sum_{i} \left[\frac{n}{p_{i}} \right] + \sum_{i \le j} \left[\frac{n}{p_{i}p_{j}} \right] - \sum_{i \le j \le k} \left[\frac{n}{p_{i}p_{j}p_{k}} \right] + \dots + (-1)^{n} \left[\frac{n}{p_{1}p_{2}p_{3}\dots p_{t}} \right]$$

2. If x approaches ∞ , $\pi(x)$ approaches $\frac{x}{\log x}$ for $x \ge 2$ i.e

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1.$$

Example 1: Determine whether the following are prime or composite

a) 129 b) 1729 c) 1601 d) 1001

Solution: a) It's composite since 3 is a factor

b) Given 1729.

The prime factors $\leq \sqrt{1729} = 41.58$ are 2,3,5,7,11,13,17,19,23,29,31,37 . In this 7 is a factor of 1729 (7|1729). Therefore, it is a composite number

c) 1601. The prime factors $\leq \sqrt{1601} = 40.01$ are 2,3,5,7,11,13,17,19,23,29,31,37 In this none of the numbers divide 1601.

Therefore, 1601 is a prime number.

d) 1001. The prime factors $\leq \sqrt{1001} = 31$ are 2,3,5,7,11,13,17,19,23,29,31. In this 7 is a factor of 1001 (7|1001). Therefore, it is a composite number **Example 2:** Find the number of primes ≤ 61 using $\pi(x)$.

Solution:

$$\pi(n) = n - 1 + \pi(\sqrt{n}) - \sum_{i} \left\lfloor \frac{n}{p_{i}} \right\rfloor + \sum_{i < j} \left\lfloor \frac{n}{p_{i}p_{j}} \right\rfloor - \sum_{i < j < k} \left\lfloor \frac{n}{p_{i}p_{j}}p_{k} \right\rfloor + \cdots$$

$$+ (-1)^{n} \left\lfloor \frac{n}{p_{1}p_{2}p_{3}..p_{t}} \right\rfloor$$

$$\pi(61) = 61 - 1 + \pi(\sqrt{61}) - \left(\frac{61}{2} + \frac{61}{3} + \frac{61}{5} + \frac{61}{7}\right)$$

$$+ \left(\frac{61}{6} + \frac{61}{10} + \frac{61}{14} + \frac{61}{15} + \frac{61}{21} + \frac{61}{35}\right)$$

$$-\left(\frac{61}{30} + \frac{61}{42} + \frac{61}{70} + \frac{61}{105}\right) + \left(\frac{61}{210}\right)$$

$$= 60 + 4 - (30 + 20 + 12 + 8) + (10 + 6 + 4 + 4 + 2 + 4)$$

$$-(1 + 2 + 0 + 0) + (0)$$

$$= 21.$$

Example 3: Find the number of primes ≤ 100 using $\pi(x)$.

Solution:

$$\pi(n) = n - 1 + \pi(\sqrt{n}) - \sum_{i} \left\lfloor \frac{n}{p_{i}} \right\rfloor + \sum_{i < j} \left\lfloor \frac{n}{p_{i}p_{j}} \right\rfloor - \sum_{i < j < k} \left\lfloor \frac{n}{p_{i}p_{j}p_{k}} \right\rfloor + \cdots$$

$$+ (-1)^{n} \left\lfloor \frac{n}{p_{1}p_{2}p_{3}..p_{t}} \right\rfloor$$

$$\pi(100) = 100 - 1 + \pi(\sqrt{100}) - \left(\frac{100}{2} + \frac{100}{3} + \frac{100}{5} + \frac{100}{7}\right)$$

$$+ \left(\frac{100}{6} + \frac{100}{10} + \frac{100}{14} + \frac{100}{15} + \frac{100}{21} + \frac{100}{35}\right)$$

$$- \left(\frac{100}{30} + \frac{100}{42} + \frac{100}{70} + \frac{100}{105}\right) + \left(\frac{100}{210}\right)$$

$$= 99 + 4 - (50 + 33 + 20 + 14) - (16 + 10 + 7 + 6 + 4 + 2)$$

$$= 25.$$

Example 4: Find five consecutive integers that are composite.

Solution: Here, n=5, We know that the consecutive composite numbers are given by (n+1)!+2,(n+1)!+3,....(n+1)!+(n+1)

For
$$n = 5$$
 we have $6! + 2, 6! + 3, 6! + 4, 6! + 5, 6! + 6$
= 722, 723, 724, 725, 726 are composite.

Example 5: Find six consecutive integers that are composite.

Solution: We know that the consecutive composite numbers are given

By
$$(n + 1)! + 2$$
, $(n + 1)! + 3$, $(n + 1)! + (n + 1)$
For $n = 6$ we have $7! + 2$, $7! + 3$, $7! + 4$, $7! + 5$, $7! + 6$, $7! + 7$
= 5042, 5043,5044,5045,50486,5047 are composite.

Example 6: Find five consecutive integers < 100 that are composite numbers.

Solution: Since 5! = 120 > 100,

We consider 4!, 4! + 1, 4! + 2, 4! + 3, 4! + 4,

Therefore, 24, 25, 26, 27, 28 are 5 consecutive composite numbers < 100.

GREATEST COMMON DIVISOR

View the lecture on YouTube: https://youtu.be/IfLqUhTNQ3c

Greatest Common Divisor (GCD)

The greatest common divisor (GCD) of two integers a and b, not both zero, is the largest positive integer that divides both a and b; it is denoted by (a, b). For example, (12, 18) = 6, (12, 25) = 1, (11, 19) = 1, (-15, 25) = 5, and (3, 0) = 3.

Important Results

A positive integer d is the gcd of two positive integers a and b, if

- (i) d|a and d|b.
- (ii) If $c \mid a$ and $c \mid b$ then $c \mid d$, where c is the positive integer .

Theorem 1: The GCD of positive integers a and b is the linear combination with respect to a and b.

Proof:

Let
$$S = \{xa + yb/xa + yb > 0, x, y \in Z\}.$$

For
$$x = 1$$
 and $y = 0$, $S = a \Rightarrow S$ is non empty.

Therefore by well ordering principle, let S has the least positive integer d.

d = la + mb for some positive integers l and m.

To Prove: d = gcd(a, b).

Since d>0, by the division algorithm $a\ and\ d$, there exist an integers q and r such that

$$a = qd + r, 0 \le r < d (1)$$

$$r = a - qd$$

$$= a - q(la + mb)$$

$$= (1 - ql)a + (-qm)b.$$

This shows r is the linear combination of a and b.