DOWNLOADED FROM STUCOR APP

Principle of Mathematical Induction:

Let P(n) be the given statement.

Base Step: $P(n_0)$ is true for some integer n_0 .

Inductive Step: P(k) is true for an arbitrary integer $k \ge n_0$.

Then P(k + 1) is true.

Hence P(n) is true for every integer $n \ge n_0$.

Example 5: Prove by induction $2n^3 + 3n^2 + n$ is divisible by $6, \forall n \ge 0$.

Solution:

Let $P(n) = 2n^3 + 3n^2 + n$ is divisible by $6, \forall n \ge 0$.

Base Step:

P(0) = 0 is divisible by 6.

Inductive Step:

Assume P(k) is true for all $k \ge 0$.

i.e.
$$2k^3 + 3k + k$$
 is divisible by $6, \forall k \ge 0$

i.e.
$$2k^3 + 3k + k = 6m$$
 (say), $m > 0$. ----(1)

To Prove: P(k + 1) is true.

i.e.
$$2(k+1)^3 + 3(k+1)^2 + (k+1)$$
 is divisible by 6.

Consider $2(k+1)^3 + 3(k+1)^2 + (k+1)$.

$$= 2(k^3 + 1 + 3k^2 + 3k) + 3(k^2 + 2k + 1) + (k + 1)$$

$$= 2k^3 + 6k^2 + 6k + 2 + 3k^2 + 6k + 3 + k + 1$$

$$= (2k^3 + 3k^2 + k) + (6k^2 + 12k + 6)$$

$$= 6m + 6(k^2 + 2k + 1)$$

$$= 6(k^2 + 2k + 1 + m)$$

Which is divisible by 6.

Thus P(k + 1) is true.

Hence P(n) is true.