IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

Definition:

Let F be a field and $f(x) \in F[x]$ is of degree ≥ 2 . We call f(x) is reducible over F if there exist $g(x), h(x) \in F[x]$ such that f(x) = g(x) h(x).

where deg g(x) and deg h(x) are greater than or equal to 1.

i.e., $deg g(x) \ge 1$ and $deg h(x) \ge 1$.

If f(x) is not reducible, then we call it irreducible (or prime) over F.

Theorem: Reducibility test

Let F be a field and $f(x) \in F[x]$.

Then (i) If f(x) is of degree 1, then f(x) is irreducible.

(ii) If f(x) is of degree 2 or 3, then f(x) is reducible iff f(x) has a root F.

Proof:

(i) Let f(x) = ax + b, $a \neq 0$ in F[x].

Suppose f(x) is reducible, then there exist $g(x), h(x) \in F[x]$ such that

$$f(x) = g(x) h(x).$$

Where $1 \le \deg g(x) < \deg f(x)$ and $1 \le \deg h(x) < \deg f(x)$

therefore
$$ax + b = g(x) h(x)$$

therefore deg(ax + b) = deg g(x) + deg h(x)

$$\Rightarrow$$
 1 = deg $g(x) + deg h(x)$

This is impossible, since deg $g(x) + deg h(x) \ge 2$

Therefore f(x) is irreducible over F.

(ii) Let $f(x) \in F[x]$ be of degree 2 or 3

Suppose f(x) is reducible over F, then f(x) = g(x) h(x) for some $g(x), h(x) \in F[x]$,

Where $1 \le \deg g(x) < \deg f(x)$ and $1 \le \deg h(x) < \deg f(x)$

Since $degf(x) = \deg g(x) + deg h(x)$ and degf(x) = 2 or 3,

we have $\deg g(x) + \deg h(x) = 2$ or 3

Therefore one of g(x) and h(x) has degree 1.

Let
$$\deg g(x) = 1 \Rightarrow g(x) = ax + b$$
, $a \neq 0$.
Now $-a^{-1} \in F$ and $g(-a^{-1}b) = a(-a^{-1}b) + b$

$$= -(a. a^{-1})b + b$$

$$= -(1.b) + b$$

$$= -b + b$$

$$= 0$$

Therefore $-a^{-1}b$ is a root of g(x)

Hence $-a^{-1}b$ is a root of f(x) in F

So, f(x) has a root in F.

Conversely, let f(x) have a root $a \in F$.

Then (x - a) is a factor of f(x).

Therefore f(x) = (x - a) g(x),

 $g(x) \in F[x].$

Hence f(x) is reducible over F.

Example 1:

Test whether the polynomial $f(x) = 2x^2 + 4$ is irreducible over Z, Q, R & C.

Solution:

Given,
$$f(x) = 2x^2 + 4$$

$$f(x) = 0 \Rightarrow 2x^2 + 4 = 0$$

$$\Rightarrow x^2 + 2 = 0$$

$$\Rightarrow x^2 = -2$$

$$\Rightarrow x = +i\sqrt{2}$$

Therefore the roots do not belong to Z, Q and R Hence $f(x)=2x^2+4$ is irreducible over Z, Q and R But the roots $i\sqrt{2}$ and $-i\sqrt{2}$ belong to C Hence $f(x)=2x^2+4$ is reducible over C.

Example 2:

Let $f(x)=x^3+x^2+x+1\in Z_2[x]$ is it irreducible or irreducible? If reducible find the other factor.

Solution:

Given
$$f(x) = x^3 + x^2 + x + 1 \in Z_2[x]$$

and $Z_2 = \{0, 1\}$
Now $f(0) = 1 \neq 0$
 $f(1) = 4 \equiv 0 \pmod{2}$
Therefore 1 is a root in Z_2
Hence $x - 1$ is a factor of $f(x)$ in $Z_2[x]$
Therefore $f(x)$ is reducible
By division algorithm $\exists \ q(x), r(x) \in Z_2[x]$
Such that,
 $x^3 + x^2 + x + 1 = (x^2 + 1)(x - 1) + 0$
Hence $x^3 + x^2 + x + 1 = (x^2 + 1)(x - 1)$.

Example 3:

Test the polynomial $f(x) = x^2 + x + 4$ in $Z_7[x]$ is irreducible over Z_7 .

Solution:

Given
$$f(x) = x^2 + x + 4$$

and $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$
We search for an element $a \in Z_7 \ni f(a) = 0$

$$f(0) = 4 \neq 0$$

$$f(1) = 6 \neq 0$$

$$f(2) = 10 \equiv 3 \pmod{7} \neq 0$$

$$f(3) = 16 \equiv 2 \pmod{7} \neq 0$$

$$f(4) = 24 \equiv 3 \pmod{7} \neq 0$$

$$f(5) = 34 \equiv 6 \pmod{7} \neq 0$$

$$f(6) = 46 \equiv 4 \pmod{7} \neq 0$$

Therefore there is no root for f(x) in Z_7

Hence f(x) is irreducible over Z_7 .

GREATEST COMMON DIVISOR

Definition: (Greatest Common Divisor)

Let F be a field and $f(x), g(x) \in F[x]$. A Greatest Common Divisor of f(x) and g(x) is a non-zero polynomial d(x) such that (i) d(x) divides f(x) and g(x) (ii) c(x) is a divisor of f(x) and g(x) then c(x) divides d(x).

Theorem 1: Let F be a field and $f(x), g(x) \in F[x]$ with at least one of them is non-zero polynomial. Then their GCD d(x) can be expressed as d(x) = a(x)f(x) + b(x)g(x), for some $a(x), b(x) \in F[x]$.

Proof:

Let
$$S = \{s(x)f(x) + t(x)g(x) : s(x), t(x) \in F[x]\}$$

Then $S \neq \emptyset$, since $f(x) \in S$.

Let d(x) be a polynomial of least degree in S.

Then
$$d(x) = a(x)f(x) + b(x)g(x)$$
, for some $a(x), b(x) \in F[x]$.

First we prove that d(x) is the g.c.d of f(x) and g(x)

Now consider f(x), d(x)

By division algorithm, there exists q(x) and r(x) such that

$$f(x) = q(x)d(x) + r(x)$$
 -----(2)

Where either r(x) = 0 (or) $\deg r(x) < \deg d(x)$

$$\therefore r(x) = f(x) - q(x)d(x)$$

$$= f(x) - q(x)[a(x)f(x) + b(x)g(x)]$$

$$= [1 - q(x)a(x)]f(x) - q(x)b(x)g(x)$$

$$= [1 - q(x)a(x)]f(x) + [[-q(x)b(x)]g(x)]$$

This is of the form s(x)f(x) + r(x)g(x)

$$:: r(x) \in S$$

If $r(x) \neq 0$, then $\deg r(x) < \deg d(x)$, which contradicts the choice of d(x)

$$\therefore r(x) = 0 \Rightarrow f(x) = q(x)d(x)$$

(using (2))

d(x) divides f(x).

Similarly, we can prove that d(x) divides g(x).

Suppose c(x) divides f(x) and g(x) then c(x) divides a(x)f(x) and b(x)g(x).

Hence c(x) divides a(x)f(x) + b(x)g(x).

$$\Rightarrow c(x) \ divides \ d(x)$$
 (using (1))

d(x) is the gcd of f(x) and g(x)

Note: Suppose d(x) is Monic then it will be unique

Suppose
$$d(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, a_n \neq 0$$

Then
$$a_n^{-1}d(x) = a_n^{-1}a_0 + a_n^{-1}a_1x + a_n^{-1}a_2x^2 + \dots + a_n^{-1}a_nx^n$$

$$= b_0 + b_1 x + b_2 x^2 + \dots + x^n$$
 is a Monic polynomial.

and $a_n^{-1}d(x)$ is also a gcd of f(x) and g(x).

Suppose $d_1(x)$ and $d_2(x)$ be two monic polynomials which are the gcd's of f(x) and g(x)

Then $d_1(x)$ divides $d_2(x)$ (treating $d_2(x)$ as gcd)

and $d_2(x)$ divides $d_1(x)$

(treating $d_1(x)$ as gcd)

 $\therefore d_1(x) = u d_2(x) \text{ for some } u \neq 0 \text{ in } F$

Since both $d_1(x)$ and $d_2(x)$ are monic polynomials by using equality of polynomial and by equating the leading coefficient's, we get u=1

$$d_1(x) = d_2(x)$$

Hence the gcd is unique, when it is monic.

Definition:

If the gcd of f(x) and $g(x) \in F$ is 1, then f(x) and g(x) are called relatively prime.

If f(x) and g(x) are relatively prime in F[x], then there exists polynomials a(x) and b(x) in F[x] such that a(x)f(x) + g(x) b(x) = 1.

Theorem 2: Let F be a field and $f(x), g(x) \in F[x]$, where $g(x) \neq 0$ and $\deg r(x) \leq \deg d(x)$.

Applying the division algorithm, we write

$$f(x) = q_1(x)g(x) + r_1(x), \quad \deg r_1(x) < \deg g(x)$$

$$g(x) = q_2(x)r_1(x) + r_2(x), \quad \deg r_2(x) < \deg r_1(x)$$

$$r_1(x) = q_3(x)r_2(x) + r_3(x), \quad \deg r_3(x) < \deg r_2(x)$$

.

•

.

$$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x), \deg r_n(x) < \deg r_{n-1}(x)$$

$$r_{n-1}(x) = q_{n+1}(x)r_n(x) + r_{n+1}(x), \ r_{n+1}(x) = 0$$

Then $r_n(x)$ is the lasts non-zero remainder.

It can be seen that $r_n(x)$ is the gcd of f(x) and g(x).

Example 1: Find the gcd of $x^4 + x^3 + 2x^2 + x + 1$ *and* $x^3 - 1$ *over Q*.

Solution:

Let
$$f(x) = x^4 + x^3 + 2x^2 + x + 1$$
 and $g(x) = x^3 - 1$

And $\deg g(x) < \deg f(x)$

Divide f(x) by g(x) by division algorithm successively.

$$f(x) = (x+1)(x^3-1) + 2(x^2+x+1), \deg(2x^2+2x+2) < \deg(x^3-1)$$

$$x^3 - 1 = \left(\frac{x}{2} - \frac{1}{2}\right)(2x^2 + 2x + 2) + 0$$

$$= (x - 1)(x^2 + x + 1)$$

 \therefore The last non-zero remainder is $(x^2 + x + 1)$

$$f(x) = (x+1)(x-1)(x^2+x+1) + (x^2+x+1)$$

$$= (x^2 + x + 1)((x + 1)(x - 1) + 1)$$

 \therefore The gcd of f(x) and g(x) is $(x^2 + x + 1)$

$$\begin{array}{c|c}
x+1 \\
x^{4}+x^{3}+2x^{2}+x+1 \\
x^{4}-x \\
\hline
x^{3}+2x^{2}+2x+1 \\
x^{3}-1 \\
\hline
2x^{2}+2x+2
\end{array}$$

$$\begin{array}{c|c}
\frac{1}{2}x - \frac{1}{2} \\
2x^2 + 2x + 2 \overline{\smash)x^3 - 1} \\
x^3 + x^2 + x \\
-x^2 - x - 1 \\
-x^2 - x - 1 \\
\hline
0
\end{array}$$

View more GCD examples on YouTube:

https://youtu.be/82nmtNxPaXE

https://youtu.be/q9lKz-cicWI

CHARACTERISTIC OF A RING

CHARACTERISTIC OF A RING

Definition: The characteristic of a ring R is the least positive integer n such that n.a = 0 for all $a \in R$ and is denoted by Char(R) = n. If no such positive integer exists, then R is said to have characteristic 0.

Examples:

- The ring $(Z_3, +, .)$ has characteristic 3.
- The ring $(Z_4, +, .)$ has characteristic 4.
- The ring (Z, +, .) and (Q, +, .) both have characteristic 0.
- The characteristic of a field (F, +, .) is either 0 or a prime number.
- The characteristic of a finite field is a prime number p.

Theorem : The characteristic of a field (F, +, .) is either 0 or a prime number

Proof: Let (F, +, .) be a field.

If Char(F) = 0, then there is nothing to prove.

If $Char(F) \neq 0$, then let Char(F) = n.

To prove n is prime.

Suppose n is not a prime, then n = pq, where 1 , <math>1 < q < n.

i.e p and q are proper factors of n.

Since Char(F) = n, we have $na = 0 \ \forall \ a \in F$.

Take a = 1, then n.1 = 0.(1 is the identity of F)

$$\Rightarrow$$
 $(pq).1 = 0 \Rightarrow (p.1)(q.1) = 0$

$$[\because (pq).1 = \underbrace{1+1+\ldots+1}_{pqterms} = \underbrace{(1+1+\cdots+1)}_{pterms} \underbrace{(1+1+\cdots+1)}_{qterms}]$$

Since F is a field, F is an integral domain and so, it has no divisor of zero,

$$\therefore$$
 either $p.1 = 0$ or $q.1 = 0$.

Since p and q are less than n, it contradicts the definition of characterics of F.

 $\therefore n$ is a prime number.

Note:

- 1. The characteristic of a ring need not be a prime. For example $Char(Z_6)=6$, which is not a prime.
- 2. The characteristic of a finite field is a prime number P.