RINGS
View the lecture on YouTube: https://youtu.be/yKRbG9Y5pYY

RING EXAMPLES
Definition 1: Rings: A non —empty set R together with two binary operations denoted
by + and . are called addition and multiplication which satisfy the following conditions
is called a ring.
i. (R,+) is an abelian group.
ii.  Multiplication is an associative binary operation on R.
a.(b.c) = (a.b).c, forall a,b,c € R
iii.  Multiplication is an distributive over addition.
a.(b+c)=(a.b) + (a.c),(a+b).c=a.c+b.cVab,cER
Example 1: Prove that the set F of all real numbers of the form a +bVv2, where
a,b € Q is a field under usual addition and multiplication of real numbers.
We have to show that F is a commutative ring with identity in which every non zero
element has multiplicative inverse.
1. Closure: a + bvZ, ¢ + dV2 where ajb, ¢, dve Q
Then (a + bv2) + (c +dv2).=(a+ c) + (b+ d)V2 € F.
=~ F is closed under +
2. Associativity: Since + s associative in the set of real numbers and F is a
subset, + is@ssociative in F.
3. Identity: 0 = 0.+ 0v2 € F is the identity for +.
4, Inverse:For any element a + bV2 € F, there exists —a — bv2 € F such that
(a+b)V24 (—a—b)V2=a—a+ (b—-b)V2=0+0V2.
Hence, the inverse of a + b2 is —a — bV/2.
Also, (a + bV2) + (c + dv2) = (c + dV2) + (a + bV2) for all a + bV2,c + dV2 € F.
~ (F,+) is an abelian group.
Now, let a + bv2, and ¢ + dV2 € F.
Then (a + bv2).(c + dv2) = (ac + 2bd) + (ad + bc)V2 € F.
Thus F is closed under multiplication.

1 =1+ 02 € F and is the multiplicative identity.
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Since the two binary operations are the usual addition and multiplication of real
numbers, multiplication is associative and commutative and the two distributive laws
are true.
Since, (a + b\/f). (c + d\/i) = (ac + 2bd) + (ad + bc)V2

= (ca + 2db) + (da + ch)V2

= (c + d\/f). (a + b\/f)
Hence multiplication is commutative. The verification of associative and distributive law
are straight forward.
To prove that multiplicative inverse exists for every non zero element of F .

Now let a + bv/2 € F — 0. Then a and b are not simultaneously 0.

1 _ a—b\2 _ a—b\2
Also, a+bv2  (a+bv2).(a—bv2)  a?-2b%

We claim that a? — 2b2.
Case (i) a # 0 and b = 0, then a? — 2b? = a® # 0.
Case (i) a = 0 and b # 0, then a? — 2b? = —2b? #0.

Case (iii) a # 0 and b # 0. Suppose a? —2b% = 0,
Then a? = 2b% = Z—z = 2. Hence % =+V2.
Now, % € Q and V2 ¢ Q. This is a contradiction.

Hence, a? — 2b* # 0

1 a b2

f— == = ——— € Fand is the inverse of a + bv2.

Hence Fis a field.

Example 2: In Z, = {0,1,2,3,4,5},2 # 0,3 # 0. But 2 x4, 3 = 0.

~.2and 3 are zero divisor. Hence Z;is a ring with zero divisors.

Example 3: (Q,+,.),(R,+,.),(C,+,.) are field.

But (Z,+,.) is an integral domain but not a field.

Practice Example: Prove that R = {a + bv/2,a,b € Z}is an integral domain, but not a
field under addition and multiplication.

Theorem 1: A ring Rhas no zero- divisors iff cancellation law is valid for multiplication
in R.
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Proof: Let R be a ring without zero- divisors. ab = 0
Let ax = ay and a = 0.
~ax—ay=0. Hencea(x —y) =0 and a # 0.
Since R has no zero-divisors, x — y = 0.
~ x = y. Thus cancellation law is valid in R.
Conversely, let the cancellation law be valid in R.
Letab=0anda # 0, ab=0 = b = 0, by cancellation law.
Hence R has no zero divisors.
Theorem 2: Every field is an integral domain.
Proof: Let R be a field.
To prove R is an integral domain, it is enough to prove that it has no zero divisors.
Suppose a, b € R with ab = 0,a # 0, then there exists a=.€ R such that aa™! = 1.
ab=0=a lab=a1.0= (a'a)b=0 = b =0.
If b # 0, then we can prove that a = 0.
~a.b=0=a=00rb=0.
~ R has no zero divisors.
Hence R is an integral domain.
Theorem 3: Every finite integral domain is a field.
Proof: Let (R, +,.) be afinite integral domain.
~ R is a commutative ring with identity and without zero divisors.
Claim: To prove R is a field, it is enough to prove that every non-zero element in R has
multiplicative inverse.
Let R ={0,1,a;,0a;3,...a,},a €R and a # 0.
Multiplying the non-zero elements of R by a, we get the set {a.1, aa,, aas, .....aa,}.
These elements are non-zero and they are distinct.
Suppose a.a; = a.ay,j # k, then a. (a; — a,) = 0Since a # 0,q; = ay,
which is a contradiction to the fact that a, are distinct elements in R.

S a.a; #F a.ay
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Since R is finite, these n elements are same as the n non-zero element in R in some
order by pigeon hole principle.
~ 1= a.a; for some q; € R. Since R is commutative, a.a; = a;.a = 1.
= Every non- zero element in R has multiplicative inverse.
Hence any finite integral domain is a field.
Definition 2: Let (R, +,.) be a ring with unity 1. An element u € R is called a unit in R
if there exists a v € R such that w.v =v.u = 1.
Example 4: In Z,, 1 and 3 are the units.
In Zs, {1,2,3,4} are the set of units.

Theorem 4: Z, is an integral domain if and only if n is a prime.
Proof: Clearly Z,, is a commutative ring with identity. To prove thatu is a prime.
Suppose n is a composite humber.
Then there exists 1 < a <n, 1 < b < n such that a.b’= n.
Leta,beZ,,and a # 0,b # 0,
a®b=0.~nisaprime.
Conversely suppose n is a prime.
To prove that Z,, has no zero divisor.
Suppose Z,, has zero divisors.
Then there exists asb € Z,, ,a # 0,b + 0 such thata © b = 0.
1<ab <nandn divides a.b. That is , n divides a or n divides b.
Which is a contradiction. Since n is a prime.
=~ Z, has no zeroudivisor.
Hence, Z,, is an integral domain.
Definition 3: Let (R, +,.),(5®,O) be two rings. These two rings are said to
isomorphic if there exists amap f:R - S such that

(M f is one-one.

(i)  fis onto.

(i) fla+b)=f(a)®f(b)and f(a,b)=f(a)® f(b) forallab €R.
Theorem 5: Let R and S be two isomorphic rings, then the following hold:
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(i) If R is commutative, then S is commutative.

(i)  If R has multiplicative identity, then S has multiplicative identity.

(iii)  If R is an integral domain, so is S.

(iv) IfRisafield, sois S.

Proof:

(i)  Let f:R — S be an isomorphism between the two rings R and S let a’,b'€ S.
Since f is onto, there exists a, be R such that (a) =a ,and f(b) = b'.
Now, a'b’ = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) =b'a.
~ § is a commutative ring.

(i)  Let 1€ R be the identity element of R.

Let a'e S. Then there exists a € R such that f(a) = a'.

Now, f(1) =a = f(1)f(a) = f(l.a) = f(a) = a .

Similarly, a' f(a) = a’ and hence f(1) is identity elementdn.sS.
~ § is a ring with identity.

(iii)  Let be R be an integral domain. Then by (i) and (ii) S is a commutative ring

with identity.
To prove that S has no zero divisors.
Leta',b'e S and let a'b” = 0.
Since f is onto there exists a, b € R such that f(a) =a and f(b) = b’
~ab =f(a)fb).=f(ab)=0=ab=0. (Since f is1—1.)
a=0o0rb=0 (sinceRis an integral domain).
f(@=0 or f(b))=0=a =00rb =0
S is an integral domain.

(iv)  To prove that every non zero element in S has an inverse.
leta'eS and a # 0. There exists a e R — {0} such that f(a) =a.
Now, f(a™Da' = f(a™Ha = f(a™'a) = f(D).

Hence f(a™') is the inverse of a' in §
~ S is afield.
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Definition 1: Let (R, +,.) be a ring. A non-empty subset S of R is called a subring of R
if S is a ring with respect to the same binary operations + and . defined in R.
Examples:
(i) (2Z,+,.) is a subring of (Z,+,.).
(i) (Z,+,.) is a subring of (Q,+,.).
(iii)(2Z,+,.) with a x b = % is a ring but not a subring of (Z, +,.).
Theorem 6: Let (R, +,.) be a ring. A non-empty subset S of R is called a subring of R
ifandonlyifa—be Sanda.be S.
Proof: Let (R,+,.) be a ring. Then S itself is a ring under the same operations 45 . as
defined in R.
Ifa,be S, then —be S.Since S is a subring.
Hencea+ (—b) =a—be S. Alsoa.beS.
Conversely, let S be a non-empty subset of R suchthat a,beS= a—beSanda.beS.
Since S is non-empty, take any element xe S. Thénx ,xe S = x—xeSie 0€S.
Let a be any element in S.
Then 0,aeS=>0—aeS = —ae S. Clearly,..+in S is closed, associative and
commutative. Also, . in S is associative and distributive over +.
Hence (S, +,.) is a subring of R.
Theorem 7: The intersection of two subrings of a ring R is again a subring of R.
Proof: Let S;; S, be two subrings of a ring R.
To prove that'§; N S, is a subring of R.
Since0 € S;and0 €S, ,weget0 €5, n S,.
~ §1 N S, is non-empty.
Let,beS ;N S, . Thena,beS,and a,b e S,.
~a—b,a.beS;anda—b,a.beS, >a—b,a.beS; NS,
Hence S; n S, is a subring of R.
Note: The union of two subrings of a ring need not be a subring.
Theorem 8: Let (R, +,.) be aring. Let S;, S, be two subrings of a ring R. Then S; U S,

isasubringof RiffS; c S, orS, c §;.
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Definition : Left Ideal

Let R be a ring. A non- empty subset I of R is called a left ideal of R if
(i) a,bel = a—-bel.
(i)reR,ael=rac€l.

Definition : Right Ideal

Let R be a ring. A non- empty subset I of R is called a right ideal of R if
(i abel = a—-bel.
(i)reR,ael = ar€l.

Definition : Ideal

Let R be a ring. A non- empty subset I of R is called an ideal of R if
(i abel =a—-bel.
(ilreR,ael =ra€landar €I

Theorem 9: Every left ideal of R is a subring of R.

Proof: Let I be a left ideal of the ring R. Let a, b € I.

Then by definitona—bel and a,b e I.

Hence I is a subring of R.

Remark : A subring of a ring R:need not be an ideal of R.

Example: Z is subring of @, but Z'is not.an ideal of Q.
Since8€Zand§eQ=>8.§ € Z.

Note: For any'ring R,{0} and R are always ideal of R called improper ideals. Other
ideals are called'proper ideals.

Theorem 10: Afield has no proper ideals.

Proof: Let I be an ideal of the field F. Suppose I # {0}.

We shall prove that I = F. Since I # {0}, there exists a non-zero element a € I. Also
aleFsuchthata.al=1€l.

letreF,1el=r.1el. ThusF C I.

But, I cF.

Hence, I = F.
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