

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC513 – IMAGE PROCESSING AND COMPUTER VISION III YEAR / V SEMESTER

Unit II- IMAGE ENHANCEMENT AND RESTORATION

Topic : Smoothing linear filter and sharpening spatial filter

Smoothing Linear filter

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing tasks, such as removal of small details from an image prior to (large) object extraction, and bridging of small gaps in lines or curves.

Noise reduction can be accomplished by blurring with a linear filter and also by nonlinear filtering.

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels contained in the neighborhood of the filter mask. These filters sometimes are called averaging filters. As mentioned in the previous section, they also are referred to a lowpass filters

monation later in uno occupit.

Figure 3.32 shows two 3×3 smoothing filters. Use of the first filter yields the standard average of the pixels under the mask. This can best be seen by substituting the coefficients of the mask into Eq. (3.4-4):

$$R=\frac{1}{9}\sum_{i=1}^{9}z_i$$

a b FIGURE 3.32 Two 3×3 smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.

With reference to Eq. (3.4-1), the general implementation for filtering an $M \times N$ image with a weighted averaging filter of size $m \times n$ (m and n odd) is given by the expression

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$
(3.5-1)

1

2

1

The parameters in this equation are as defined in Eq. (3.4-1). As before, it is understood that the complete filtered image is obtained by applying Eq. (3.5-1) for x = 0, 1, 2, ..., M - 1 and y = 0, 1, 2, ..., N - 1. The denominator in

Sharpening filter

The principal objective of sharpening is to highlight transitions in intensity. Uses of image sharpening vary and include applications ranging from electronic printing and medical imaging to industrial inspection and autonomous guidance in military systems.

In the last section, we saw that image blurring could be accomplished in the spatial domain by pixel averaging in a neighborhood. Because averaging is analogous to integration, it is logical to conclude that sharpening can be accomplished by spatial differentiation.

This, in fact, is the case, and the discussion in this section deals with various ways of defining and implementing operators for sharpening by digital differentiation.

Fundamentally, the strength of the response of a derivative operator is proportional to the degree of intensity discontinuity of the image at the point at which the operator is applied. Thus, image differentiation enhances edges and other discontinuities (such as noise) and deemphasizes areas with slowly varying intensities

a

28-10-2023

Smoothing linear filter and sharpening spatial filter / 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE

 $\nabla^2 f(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)$ -4f(x, y)(3.6-6)

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.37 (a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

Smoothing linear filter and sharpening spatial filter / 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE

Any Query????

Thank you.....

28-10-2023

Smoothing linear filter and sharpening spatial filter / 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE