

Byzantine Generals Problem

- The Problem
- Two Solutions
- Oral Messages
- Signed Messages

The Problem

≻Important to have reliable computer systems

➤Two solutions to ensuring a reliable system

Having components that never fail

Ensure proper handling of cases where components fail

➢Byzantine Generals Problem

➢ Divisions of the Byzantine army camped outside the walls of an enemy city.

 \succ Each division is led by a general.

≻Generals decide on a common plan of action

The Problem

There are two types of generals

- Loyal Generals
- Traitor Generals

Problem – Conditions

Two conditions must be met:

- All loyal generals decide upon the same plan of action.
- A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Problem – Not a Bad Plan

A plan that is not bad is defined in the following way:

- ≻Each general sends his observation to all other generals.
- >Let v(i) be the message communicated by the i^{th} general.
- The combination of the v(i) for i = 1, ..., n messages received determine a plan that is not bad.

General 2 receives ATTACK, ATTACK.
General 3 receives ATTACK, ATTACK.
So Not a Bad Plan is to ATTACK

Problem – Example Not a Bad Plan

- ➤Assumed that every general communicates the same v(i) to every other general.
- ➢A traitor general can send different v(i) messages to different generals.

≻General 2 receives ATTACK, ATTACK.

≻General 3 receives RETREAT, ATTACK.

Is Not a Bad Plan to ATTACK or RETREAT?

Problem – New Conditions

The new conditions are:

Any two loyal generals use the same value of v(i).
If the ith general is loyal, then the value that he sends must be used by every loyal general as the value of v(i).

Byzantine Generals Problem

- A commander general giving orders to his lieutenant generals.
- Byzantine Generals Problem A commanding general must send an order to his n-1 lieutenant generals such that:
 - ✤IC1. All loyal lieutenants obey the same order.
 - ✤IC2. If the commanding general is loyal, then every loyal lieutenant obeys the order he sends.

Impossibility Results

When will the Byzantine Generals Problem fail?

The problem will fail if 1/3 or more of the generals are traitors.

Impossibility Results – Example 2

L1 again received the commands ATTACK, RETREAT L1 doesn't know which general is a traitor.

Solution with Oral Messages

Assumptions:

A1: Every message that is sent is delivered correctly.

A2: The receiver of a message knows who sent it.

A3: The absence of a message can be detected.

Solution with OM – Example

n=4 generals; m=1 traitors

L1, L2, L3 calculate majority(x, y, z)

Solution with Signed Messages

Simplify the problem by allowing generals to send unforgeable, signed messages

New assumption A4:

- A loyal general's signature cannot be forged, and any alteration of the contents of his signed messages can be detected.
- b) Anyone can verify the authenticity of a general's signature.

THANK YOU!!!

