

End Fire Array:

- ➤ The end fire array is very much similar to the broadside array from the point of view of arrangement.
- ➤ But the main difference is in the direction of maximum radiation.

- ➤ In broadside array, the direction of the maximum radiation is perpendicular to the axis of array.
- ➤ While in the end fire array, the direction of the maximum radiation is along the axis of array.

Broadside Array:

- ➤ This is a type of array in which the number of identical elements is placed on a supporting line drawn perpendicular to their respective axes.
- \triangleright The spacing between any two elements is denoted by-**d**.
- ➤ All the elements are fed with currents with equal magnitude and same phase.
- ➤ The direction of maximum radiation is perpendicular to the array axis and to the plane containing the array clement.

➤ Now consider two isotropic point sources spaced equally with respect to the origin of the co-ordinate system as shown in the Fig.

ADVANTAGES:

No secondary lobes

DISADVANTAGE:

High beam width
When designing array of large number of antennas layer
amplitude ratio is required