

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19EC505-VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 1 – MOS TRANSISTOR PRINCIPLE

MOS- NON IDEAL IV CHARACTERISTICS

OUTLINE

- TRANSISTOR I-V REVIEW
- NONIDEAL TRANSISTOR BEHAVIOR -VELOCITY SATURATION
 - -CHANNEL LENGTH MODULATION
 - **–BODY EFFECT**
 - -LEAKAGE
 - **–**TEMPERATURE SENSITIVITY
 - ACTIVITY
- PROCESS AND ENVIRONMENTAL VARIATIONS **–**PROCESS CORNERS •ASSESSMENT •SUMMARY

IDEAL TRANSISTOR I-V

Shockley 1st order transistor models

9/2/2022

VELOCITY SATURATION

• We assumed carrier velocity is proportional to E-field

 $-v = mE_{lat} = mV_{ds}/L$

- At high fields, this ceases to be true
 - -Carriers scatter off atoms
 - -Velocity reaches v_{sat}
 - Electrons: $6-10 \times 10^6$ cm/s
 - Holes: 4-8 x 10⁶ cm/s
 - -Better model

VELOCITY SATURATION I-VEFFECTS

- Ideal transistor ON current increases with V_{DD}^2 $I_{ds} = \mu C_{ox} \frac{W}{I} \frac{\left(V_{gs} - V_{t}\right)^{2}}{2} = \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2}$
- Velocity-saturated ON current increases with V_{DD}
 - $I_{ds} = C_{ox}W \left(V_{gs} V_t \right) v_{max}$
- Real transistors are partially velocity saturated

-Approximate with a-power law model $-I_{ds} \propto V_{DD_a}$

-1 < a < 2 determined empirically

α- **POWER MODEL**

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

9/2/2022

 $I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$ $V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$

 $V_{gs} = 1.8$

- $V_{gs} = 1.5$
- $V_{gs} = 1.2$
- $V_{gs} = 0.9$

CHANNEL LENGTH MODULATION

- Reverse-biased p-n junctions form a depletion region
 - -Region between n and p with no carriers
 - –Width of depletion L_d region grows with reverse bias

$$-L_{eff} = L - L_d$$

- Shorter L_{eff} gives more current
 - $-I_{ds}$ increases with V_{ds}
 - -Even in saturation

CHAN.LENGTH MOD I-V

0

0

 $I_{ds}(\mu A)$

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

 λ = channel length modulation coefficient •not feature size

•Empirically fit to I-V characteristics

BODY EFFECT & BODY EFFECT MODEL

- $V_t = V_t$ • V_t: gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- Increase in V_t with V_s is called the body effect
 - - $\gamma =$

$$Y_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

• $f_s = surface potential$ at threshold $\phi_s = 2v_T \ln \frac{N_A}{N}$ –Depends on doping level N_A –intrinsic carrier concentration n_i • $\gamma = body effect coefficient$

$$=\frac{t_{\rm ox}}{\varepsilon_{\rm ox}}\sqrt{2q\varepsilon_{\rm si}N_A}=\frac{\sqrt{2q\varepsilon_{\rm si}N_A}}{C_{\rm ox}}$$

OFF TRANSISTOR BEHAVIOR

- What about current in cutoff?
- Simulated results
- What differs? -Current doesn't go to 0 in cutoff

LEAKAGE SOURCES

- Subthreshold conduction
 - -Transistors can't abruptly turn ON or OFF
- Junction leakage
 - -Reverse-biased PN junction diode current
- Gate leakage
 - -Tunneling through ultrathin gate dielectric
- Subthreshold leakage is the biggest source in modern transistors

ACTIVITY

Quick! Count the number of times that the letter F appears in the following sentence:

"Finished files are the result of years of scientific study combined with the experience of years."

SUBTHRESHOLD LEAKAGE

• Subthreshold leakage exponential with V_{gs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv}} \left(\frac{-V_{ds}}{1 - e^{v_T}} \right) \qquad I_{ds0} =$$

• n is process dependent, typically 1.4-1.5

$=\beta v_T^2 e^{1.8}$

DRAIN-INDUCED BARRIER LOWERING DIBL

 Drain-Induced Barrier Lowering –Drain voltage also affect V_t

-High drain voltage causes sub threshold leakage to increase.

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

$V_t' = V_t - \eta V_{ds}$

JUNCTION LEAKAGE

- Reverse-biased p-n junctions have some leakage $I_{D} = I_{S} \left(e_{v}^{\frac{V_{P}}{v}} - 1 \right)$
- I_s depends on doping levels

 And area and perimeter of diffusion regions
 - -Typically < 1 fA/mm^2

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

GATE LEAKAGE

- Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current
- Negligible for older processes
- May soon be critically important

10⁹ -

10⁶

Js (A/cm²) 10⁰ (10⁻³ 10⁻⁶

10⁻⁹

TEMPERATURE SENSITIVITY

- Increasing temperature -Reduces mobility -Reduces V_t
- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

increasing temperature

 V_gs

SO WHAT?

- So what if transistors are not ideal? -They still behave like switches.
- But these effects matter for...
 - -Supply voltage choice
 - -Logical effort
 - -Quiescent power consumption
 - -Pass transistors
 - -Temperature of operation

PARAMETER VARIATION

- Transistors have uncertainty in parameters
 - -Process: L_{eff} , V_t , t_{ox} of nMOS and pMOS
 - -Vary around typical (T) values
- Fast (F)
 - –L_{eff}: short
 - $-V_t$: low
 - -t_{ox}: thin
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

ENVIRONMENTAL VARIATION

- V_{DD} and T also vary in time and space
- Fast:
 - –V_{DD}: high
 - -T: low

Corner	Voltage	Temperature	
F	1.98	0 C	
Т	1.8	70 C	
S	1.62	125 C	

PROCESS CORNERS

- Process corners describe worst case variations –If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S) -nMOS speed
 - -pMOS speed
 - -Voltage
 - -Temperature

IMPORTANT CORNERS

Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthrehold	F	F	F	S
leakage				
Pseudo-nMOS	S	F	?	?

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

ASSESSMENT

1.Write the CHANNEL LENGTH MODULATION equation 2.Write the body effect derivation with its factors 3.In parameter Variation

• Fast (F)

	$-L_{eff}$: V_t : t_{ox} :					
4.	Purpose	nMOS	pMOS	V _{DD}	Temp	
	Cycle time	?	?	?	?	
	Power	?	?	?	?	
	Subthrehold	?	?	?	?	
	leakage					
	Pseudo-nMOS	?	?	?	?	

SUMMARY & THANK YOU

9/2/2022

MOS NON IDEAL IV CHARACTERISTICS /19ECB302-VLSI DESIGN/SWAMYNATHAN.S.M/ECE/SNSCT

