SNS COLLEGE OF ENGINEERING

(Autonomous)
DEPARTMENT OF CSE - IoT

COURSE NAME:19EC306 / DIGITAL CIRCUITS II YEAR/III SEMESTER

UNIT:1- MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC:BOOLEAN POSTULATES AND LAWS

Outline

- Interpretation of Boolean Algebra using Logic Operations
- Boolean Algebra and Gates
- Theorems and Proofs

Section 1: Interpretation of Boolean

 Algebra using Logic OperationsLogic Symbols, 0, 1; and AND, OR Gates. $a=1=>a$ is true , $a=0=>a$ is false.

Section 2: Boolean Algebra and Gates
P1: Commutative Laws

P2: Distributive Laws

- $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=(\mathrm{a} \cdot \mathrm{b})+(\mathrm{a} \cdot \mathrm{c})$
- $a+(b \cdot c)=(a+b) \cdot(a+c)$

ID	a	b	c	$\mathrm{b}+\mathrm{c}$	$\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})$	$\mathrm{a} \cdot \mathrm{b}$	$\mathrm{a} \cdot \mathrm{c}$	$(\mathrm{a} \cdot \mathrm{b})+(\mathrm{a} \cdot \mathrm{c})$
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0
2	0	1	0	1	0	0	0	0
3	0	1	1	1	0	0	0	0
4	1	0	0	0	0	0	0	0
5	1	0	1	1	1	0	1	1
6	1	1	0	1	1	1	0	1
7	1	1	1	1	1	1	1	1

P2: Distributive Laws, cont.

P3 Identity

\[

\]

P4 Complement

$a \cdot a^{\prime}=0$

Section 3, Theorems and Proofs

Theorem 1: Principle of Duality

- Every algebraic identity that can be proven by Boolean algebra laws, remains valid if we swap all '+' and '.', 0 and 1 .

Proof:

- Visible by inspection - all laws remain valid if we interchange all

$$
'+' \text { and }{ }^{\prime} \cdot, 0 \text { and } 1
$$

Theorem 2

Uniqueness of Complement: For every a in B, its complement a' is unique.

Proof: We prove by contradiction.
Suppose that a^{\prime} is not unique, i.e. $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}$ in $B \& a_{1}{ }^{\prime} \neq$ a_{2}.
We have $\mathrm{a}_{1}{ }^{\prime}=\mathrm{a}_{1}{ }^{\prime} * 1$ (Postulate 3)

$$
=a_{1}{ }^{\prime} * *\left(a+a_{2}^{\prime}\right)(\text { Postulate } 4)
$$

$$
\left.=\left(a_{1}{ }^{\prime} * a\right)+\left(a_{1}{ }^{\prime} * a_{2}{ }^{\prime}\right) \text { (Postulate } 2\right)
$$

$$
=0+\left(a_{1}{ }^{\prime} * a_{2}^{\prime}\right)(\text { Postulate } 4)
$$

$$
=\mathrm{a}_{1}{ }^{\prime} * \mathrm{a}_{2}{ }^{\prime}(\text { Postulate } 3)
$$

Likewise, we can also prove the same with a_{2}, i.e.

$$
\mathrm{a}_{2}^{\prime}=\mathrm{a}_{1}{ }^{\prime *} \mathrm{a}_{2}^{\prime} .
$$

Consequently, we have $\mathrm{a}_{1}{ }^{\prime}=\mathrm{a}_{2}{ }^{\prime}$, which contradicts

Theorem 3

Boundedness: For all elements a in $B, a+1=1$; $\mathrm{a}^{*} 0=0$.

$$
\begin{array}{rlr}
\text { Proof: } \mathrm{a}+1 & =1 \quad *(\mathrm{a}+1) & \\
& =\left(\mathrm{P}+\mathrm{a}^{\prime}\right)^{*(a+1)} & \\
& (\text { Postulate 3) } \\
& =a+a^{\prime *} 1 & \\
& =a+a^{\prime} & \\
& =1 & \\
& \text { Postulate 4) } \\
\text { (Postulate 2) 3) }
\end{array}
$$

Comments:
'1' dominates as input in OR gates.
' 0 ' dominates as input in AND gates.

Theorem 4

Statement:

- The complement of element 1 is 0 and vice versa, i.e.

$$
0^{\prime}=1,1^{\prime}=0 .
$$

Proof:

$$
0+1=1 \text { and } 0 * 1=0(\text { Postulate } 3)
$$

Thus $0^{\prime}=1,1{ }^{\prime}=0($ Postulate 4 and Theorem 2)

Theorem 5: Idempotent Laws

Statement: For every a in B,

$$
a+a=a \quad \text { and } \quad a * a=a .
$$

Proof:

$$
\begin{aligned}
& a+a=(a+a) * \quad 1 \quad \text { (Postulate 3) } \\
& =(a+a) *\left(a+a^{\prime}\right)(\text { Postulate 4) } \\
& =a+\left(a^{*} a^{\prime}\right) \quad \text { (Postulate 2) } \\
& =\mathrm{a}+0 \quad \text { (Postulate 4) } \\
& =\mathrm{a} \quad \text { (Postulate 3) }
\end{aligned}
$$

