



SNS COLLEGE OF ENGINEERING (Autonomous) DEPARTMENT OF CSE - IoT

#### COURSE NAME:19EC306 / DIGITAL CIRCUITS II YEAR/III SEMESTER

#### **UNIT:1- MINIMIZATION TECHNIQUES AND LOGIC GATES**

#### **TOPIC:BOOLEAN POSTULATES AND LAWS**

11/09/23







- Interpretation of Boolean Algebra using Logic Operations
- Boolean Algebra and Gates
- Theorems and Proofs

# Section 1: Interpretation of Boolean Algebra using Logic Operations

Logic Symbols, 0, 1; and AND, OR Gates.

a = 1 = a is true,

a = 0 = a is false.

| id | a | b | a OR b |
|----|---|---|--------|
| 0  | 0 | 0 | 0      |
| 1  | 0 | 1 | 1      |
| 2  | 1 | 0 | 1      |
| 3  | 1 | 1 | 1      |

| Id | a | b | a AND b |
|----|---|---|---------|
| 0  | 0 | 0 | 0       |
| 1  | 0 | 1 | 0       |
| 2  | 1 | 0 | 0       |
| 3  | 1 | 1 | 1       |

# Section 2: Boolean Algebra and Gates

P1: Commutative Laws





# P2: Distributive Laws



- $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- $a+(b\cdot c) = (a+b)\cdot(a+c)$

| 0 | 0           |                                                   |                                                                       |                                                                                               |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   | u U                                                                                                                                                                                                                                               |                                    | $(a \cdot b) + (a \cdot c)$                                                                                                                                                                   |
|---|-------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ~           | 0                                                 | 0                                                                     | 0                                                                                             | 0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 0                                  | 0                                                                                                                                                                                             |
| Ι | 0           | 0                                                 | 1                                                                     | 1                                                                                             | 0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 0                                  | 0                                                                                                                                                                                             |
| 2 | 0           | 1                                                 | 0                                                                     | 1                                                                                             | 0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 0                                  | 0                                                                                                                                                                                             |
| 3 | 0           | 1                                                 | 1                                                                     | 1                                                                                             | 0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 0                                  | 0                                                                                                                                                                                             |
| 4 | 1           | 0                                                 | 0                                                                     | 0                                                                                             | 0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 0                                  | 0                                                                                                                                                                                             |
| 5 | 1           | 0                                                 | 1                                                                     | 1                                                                                             | 1                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                 | 1                                  | 1                                                                                                                                                                                             |
| 6 | 1           | 1                                                 | 0                                                                     | 1                                                                                             | 1                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                 | 0                                  | 1                                                                                                                                                                                             |
| 7 | 1           | 1                                                 | 1                                                                     | 1                                                                                             | 1                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                 | 1                                  | 1                                                                                                                                                                                             |
|   | 3<br>4<br>5 | <ul> <li>3 0</li> <li>4 1</li> <li>5 1</li> </ul> | 3       0       1         4       1       0         5       1       0 | 3       0       1       1         4       1       0       0         5       1       0       1 | 3       0       1       1       1         4       1       0       0       0         5       1       0       1       1         6       1       1       0       1         7       1       1       1       1 | 3       0       1       1       1       0         4       1       0       0       0       0         5       1       0       1       1       1         6       1       1       0       1       1         7       1       1       1       1       1 | 3       0       1       1       1       0         4       1       0       0       0       0         5       1       0       1       1       1         6       1       1       0       1       1         7       1       1       1       1       1 | 3011100410000051011106110111711111 | 3       0       1       1       1       0       0       0         4       1       0       0       0       0       0       0         5       1       0       1       1       1       0       1 |

Circuits/S.Jayashree/CSD/SNSCE





## P2: Distributive Laws, cont.









# P3 Identity

$$a+0=a,$$
  $a\cdot 1$ 

#### 0 input to OR is passive

1 input to AND is passive

= a,









# P4 Complement

$$a+a' = 1$$

$$\mathbf{a} \cdot \mathbf{a}' = \mathbf{0}$$









## **Theorem 1: Principle of Duality**

Every algebraic identity that can be proven by
 Boolean algebra laws, remains valid if we swap
 all '+' and '.', 0 and 1.

### **Proof:**

• Visible by inspection – all laws remain valid if we interchange all

'+' and '.', 0 and 1



# Theorem 2



**Uniqueness of Complement:** For every a in B, its complement a' is unique.

**Proof:** We prove by contradiction.

Suppose that a' is not unique, i.e.  $a_1'$ ,  $a_2'$  in B &  $a_1' \neq a_2'$ .

We have 
$$a_1' = a_1' * 1$$
 (Postulate 3)  
=  $a_1' * (a + a_2')$  (Postulate 4)  
=  $(a_1' * a) + (a_1' * a_2')$  (Postulate 2)  
=  $0 + (a_1' * a_2')$  (Postulate 4)  
=  $a_1' * a_2'$  (Postulate 3).

Likewise, we can also prove the same with  $a_2$ ', i.e.

$$a_2' = a_1' * a_2'.$$

Consequently, we have  $a_1' = a_2'$ , which contradicts our initial assumption that  $a_1' \neq a_2'$ .

# Theorem 3



**Boundedness:** For all elements a in B, a+1=1; a\*0=0.

Proof: 
$$a+1 = 1 *(a+1)$$
(Postulate 3) $= (a + a')*(a+1)$ (Postulate 4) $= a + a'*1$ (Postulate 2) $= a + a'$ (Postulate 3) $= 1$ (Postulate 3)

Comments:

'1' dominates as input in OR gates.

'0' dominates as input in AND gates.





## Theorem 4



#### Statement:

• The complement of element 1 is 0 and vice versa, i.e.

#### **Proof:**

0 + 1 = 1 and 0 \* 1 = 0 (Postulate 3) Thus 0'= 1, 1'= 0 (Postulate 4 and Theorem 2)





**Statement:** For every a in B,

a + a = a and a \* a = a.





**Proof:** 

a + a = (a + a) \* 1 (Postulate 3) = (a + a) \* (a + a') (Postulate 4)  $= a + (a^*a')$  (Postulate 2) = a + 0 (Postulate 2) = a (Postulate 3) Minimization techniques and logic gates/19EC306 -Digital

Circuits/S.Jayashree/CSD/SNSCE

11/09/23







11/09/23

Minimization techniques and logic gates/19EC306 –Digital Minimization techniques Janey/CSE - IoT/SNSCE gates/19EC306 –Digital Circuits/S.Jayashree/CSD/SNSCE