

SNS COLLEGE OF ENGINEERING

(Autonomous) DEPARTMENT OF CSE - IoT

COURSE NAME:19EC306 / DIGITAL CIRCUITS II YEAR/III SEMESTER

UNIT:1- MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC: TABULATION METHOD USING QUINE MCKLUSKEY METHOD

- K-Map is systemic
- Require the ability to identify and visualize the prime implicants in order to cover all minterms
- But effective only up to 5-6 input variables!

Quine-McCluskey Algorithm

- Tabular Method
 - Compute all prime implicants
 - Find a minimum expression for Boolean functions
- No visualization of prime implicants
- Can be programmed and implemented in a computer

Example

$$F(W, X, Y, Z) = \sum m(0,3,5,6,7,10,12,13) + \sum d(2,9,15)$$

Step 1 : Divide all the minterms (and don't cares) of a function into groups

For			
Min	ter	m	s:

Minterm ID	W	X	Υ	Z
0	0	0	0	0
3	0	0	1	1
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
10	1	0	1	0
12	1	1	0	0
13	1	1	0	1

F	or	d	10	1'1	•
C	ar	es	:		

Minterm ID	W	X	Υ	Z
2	0	0	1	0
9	1	0	0	1
15	1	1	1	1

Step 1: Divide all the minterms (and don't cares) of a function into groups

Groups	Minterm ID	W	X	Y	Z	Merge Mark
G0	0	0	0	0	0	
G1	2	0	0	1	0	
	3	0	0	1	1	
	5	0	1	0	1	
00	6	0	1	1	0	
G2	9	1	0	0	1	
	10	1	0	1	0	
	12	1	1	0	0	
	7	0	1	1	1	
G3	13	1	1	0	1	
G4	15	1	1	1	1	

□ Step 3: Repeat step 2 until no more merging is possible

Groups	Minterm ID	W	X	Υ	Z	Merge Mark
G0'	0, 2	0	0	d	0	
G1'	2, 3	0	0	1	d	¥
	2, 6	0	d	1	0	P
	2, 10	d	0	1	0	
G2'	3, 7	0	d	1	1	
	5, 7	0	1	d	1	
	6, 7	0	1	1	d	
	5, 13	d	1	0	1	
	9, 13	1	d	0	1	1
	12, 13	1	1	0	d	
G3'	7, 15	d	1	1	1	
	13, 15	1	1	d	1	

Groups	Minterm ID	W	Χ	Υ	Z
G1"	2, 3, 6, 7	0	d	1	d
	2, 6, 3, 7	0	d	1	d
G2"	5, 7, 13, 15			d	1
	5, 7, 13, 15	d	1	d	1

Step 3: Repeat step 2 until no more merging is possible

Groups	Minterm ID	W	X	Y	Z	Merge Mark
G0"	0, 2	0	0	d	0	
G1"	2, 3, 6, 7	0	d	1	d	
	2, 10	d	0	1	0	
G2"	5, 7, 13, 15	d	1	d	1	
	9, 13	1	d	0	1	
	12, 13	1	1	0	d	

No more merging possible!

☐ Step 4: Put all prime implicants in a cover table (don't cares excluded)

Minterm ID	$\overline{W} \overline{X} \overline{Z}$	$\overline{W}Y$	$\overline{X}Y\overline{Z}$	XZ	$WX\overline{Y}$	$W\overline{Y}Z$
0	1					
3		1				
5				1		
6		1				
7		1		1		
10			1			
12					1	
13				1	1	1

Need not include don't cares

Step 5: Identify essential minterms, and hence essential prime implicants

Minterm ID	$\overline{W} \overline{X} \overline{Z}$	$\overline{W}Y$	$\overline{X}Y\overline{Z}$	XZ	$WX\overline{Y}$	$ W\overline{Y}Z $
0 3 5 6 7 10 12 13	1	1 1	1	1 1 1	1	1

Outline

Step 6: Add prime implicants to the minimum expression of Funtil all minterms of Fare covered

Minterm ID	$\overline{W} \overline{X} \overline{Z}$	$\overline{W}Y$	$\overline{X}Y\overline{Z}$	XZ	$WX\overline{Y}$	$W\overline{Y}Z$
0 3 5 6 7 10 12 13	1	1 1	1	1		Already cover all minterms!

$$F(W, X, Y, Z) = \sum m(0,3,5,6,7,10,12,13) + \sum d(2,9,15)$$

 So after simplification through QM method, a minimum expression for F(W, X, Y, Z) is:

$$F(W, X, Y, Z) = \overline{W}\overline{X}\overline{Z} + \overline{W}Y + \overline{X}Y\overline{Z} + XZ + WX\overline{Y}$$

