Roll No. \square

B. Tech. ECE/(EE/EEE)/EIE (Sem. 4)
 D. DIGITAL ELECTRONICS

DIGITAL ELECTRONICS
Subject Code: EC-204
Paper ID: A0307
Time: 3 Hrs.
Total No. of Pages: 02

INSTRUCTIONS TO CANDIDATES:

1. Section A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. Section B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. Section C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1. Explain briefly:
a) Convert to BNS to grey code (11110001101).
b) $(213)_{8}-(145)_{8} \quad=(---)_{8}$ and $(2 F C)_{16}+(\mathrm{ICD})_{16}=(-----)_{16}$
c) What is race around condition and how it is improved.
d) Subtract using 2's and l's complement (34-14).
e) Solve (185) $=(-----)_{10} \quad$ and $(A D F)_{16}=(----)_{2}$
f) What is the difference between combinational and sequential circuits.
g) What are the advantages of TTL over DTL
h) What are the applications of ring counter.
i) Explain terms fan-in, fan-out and Resolution AD Converter.
j) What are the applications of Multiplexer?

SECTION B

2. Solve using K-map and implement using NAND gates only.
$F(v, w, x, y)=П m(0,1,2,7,9,11,14,15)+d(4,5)$
3. Design full adder using 4:1 Multiplexer and 8:1 MUX.
4. Design four bit binary number system to grey code converter.
5. Explain-working of CMOS NAND gate in detail.
6. Explain the working of voltage to time conversion circuit.

SECTION C

7. Solve using Q-M method and verify the result with K-map. Also implement using NOR gates only.
$\mathrm{F}(\mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,2,4,5,14,15,19,23,25,27,29,31)+\mathrm{d}(7,8,9, \mathrm{l} \mathrm{l})$
8. (a) Explain the working single slope AID converter.
(b) Design MOD-5 counter using JK Flip-flops.
9. Design MOD-6 up-down counter using D flip-flops.
