SNS COLLEGE OF ENGINEERING

(Autonomous)
DEPARTMENT OF CSE - IoT

COURSE NAME:19EC306 / DIGITAL CIRCUITS
 II YEAR/III SEMESTER

UNIT:1- MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC:NUMBER SYSTEMS

INTRODUCTION

NUMBER SYSTEM CLASSIFICATION

Numbering Systems		
System	Base	Digits
Binary	2	01
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789 A B CDEF

Two types of Number Systems

- Positional Number System

- Characteristics

- Use only a few symbols called digits
- These symbols represent different values depending on the position they occupy in the number
- Non Positional Number System

Characteristics

- Use symbols such as I for 1, II for 2, III for 3, IIII for 4, IIIII for 5, etc
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number

Difficulty

- It is difficult to perform arithmetic with such a number system
- The value of each digit is determined by:

1. The digit itself
2. The position of the digit in the number
3. The base of the number system
(base $=$ total number of digits in the number
system)

- The maximum value of a single digit is always equal to one less than the value of

WHAT IS A BINARY NUMBER??

-A binary fumber is a number that includes only and zeroessio

$$
S=\{0,1,2,3,4,5,6,7,8,9\}
$$

- Another name for binary is base-2. ("base two") - Computers store information using binary humbers It is the chiniding block of all datal I I 1 II II
qIn order to understand storage capacity and sives,

COMVERSION OF BINARY TO DECIMAI

```
The finst position value is 2o, l.e one
The znid position value is 2र, t.e. two
The 2nd position value is 22 cie. four
The and position y, lue is 23, te. eight
The and position valueis 24, ite suteen eic:
```


10001011_{2}

$$
\begin{aligned}
& =1 \times 2^{7}+0 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =128+8+2+1=139_{10}
\end{aligned}
$$

EXAMPLE

DECIMAL NUMBER

- The numbers that we are used to seeing are called decimal numbers.
Decimal numbers consist of the digits from
0 (zero) through 9. $S=\{0,1,2,3,4,5,6,7,8,9\}$

Another name for decimal numbers are base-10 (pronounced "base ten") numbers.

DECIMAL TO BINARY

OCTAL NUMBERS

\Rightarrow Octal digits have place values based on the value 8.
$>$ The octal numbering system includes eight base digits ($0,1,2,3,4,5,6,7$)
$>$ Computer scientists are often looking for shortcuts to do things.
$>$ One of the ways in which we can represent binary numbers is to use their octal equivalents instead.
\Rightarrow This is especially helpful when we have to do fairly complicated tasks using numbers.

CONVERSION OF OCTAL TO BINARY

"Example: convert the number 111,base 10 to octal.

8	73	1
8	9 1	1

HEXA DECIMAL NUMBER SYSTEM

Characteristics

- A positional number system
- Has total 16 symbols or digits ($0,1,2,3,4,5,6,7$, $8,9, A, B, C, D, E, F)$. Hence its base $=16$
- The symbols A, B, C, D, E and F represent the decimal values $10,11,12,13,14$ and 15 respectively
- The maximum value of a single digit is 15 (one less than the value of the base)

Hexadecimal to Binary Conversion

t Hexadecimaj-to-Decjnal conversjon

* One way to find the decimal equivalent of a hexadecimal number is to first convert the hexadecimal number to binary and then convert from binary to decimal.
- Convert the hexadecimal number 1C to decimal:

C

$$
0001 \quad 1100=2 \square+2^{3}+2^{2}=16+8+4=28
$$

Binary to Hexadecimal Conversion

```
* Simply break the binary number into 4-bit groups, starting
    at the right-most bit and replace each 4-bit group with the
    equivalent hexadecimal symbol as in the following example.
* Convert the binary number to hexadecimal:
    1100101001010111
* Solution:
```


