SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(IoT and Cybersecurity Including BCT)

COURSE NAME : Fundamentals Of Cryptography

II YEAR / III SEMESTER
Unit I
Topic : Prime Numbers

- A prime number is a whole number greater than 1 whose only factors are 1 and itself. A factor is a whole number that can be divided evenly into another number.
- The first few prime numbers are $2,3,5,7,11,13,17,19,23$ and 29 . Numbers that have more than two factors are called composite numbers.
- The number 1 is neither prime nor composite.
- For every prime number, for example "p," there exists a prime number that is greater than p, called p^{\prime}.
- This mathematical proof, which was demonstrated in ancient times by the Greek mathematician Euclid, validates the concept that there is no "largest" prime number.
- As the set of natural numbers $N=\{1,2,3, \ldots\}$ proceeds, prime numbers do generally become less frequent and are more difficult to find in a reasonable amount of time.
prime is a number that must be reducible to the form $2^{n}-1$, where n is a prime number. The first few known values of n that produce Mersenne primes are where $n=2, n=3, n=5, n=7, n=13, n=17, n=19, n=31, n=61$, and $n=89$.
- Prime numbers and cryptography
- Encryption always follows a fundamental rule: the algorithm -- or the actual procedure being used -- doesn't need to be kept secret, but the key does.
- Prime numbers can be very useful for creating keys.
- For example, the strength of public/private key encryption lies in the fact that it's easy to calculate the product of two randomly chosen prime numbers.
- However, it can be very difficult and time-consuming to determine which two prime numbers were used to create an extremely large product, when only the product is known.
- In RSA (Rivest-Shamir-Adleman), a well-known example of public key cryptography, prime numbers are always supposed to be unique. The primes used by the DiffieHellman key exchange and the Digital Signature Standard (DSS) cryptography schemes, however, are frequently standardized and used by a large number of applications.

