SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(IoT and Cybersecurity Including BCT)

COURSE NAME : Fundamentals Of Cryptography
II YEAR / III SEMESTER
Unit I
Topic : Euclidean and Extended Algorithm

The Euclidean algorithm is a way to find the greatest common divisor of two positive integers. GCD of two numbers is the largest number that divides both of them. A simple way to find GCD is to factorize both numbers and multiply common prime factors.

```
36=2\times2\times3\times3
60=2\times2\times3\times5
GCD = Multiplication of common factors
    = 2 x 2 x 3
    = 12
```


Basic Euclidean Algorithm for GCD:

The algorithm is based on the below facts.
-If we subtract a smaller number from a larger one (we reduce a larger number), GCD doesn't change. So if we keep subtracting repeatedly the larger of two, we end up with GCD.
-Now instead of subtraction, if we divide the smaller number, the algorithm stops when we find the remainder 0 .

Below is a recursive function to evaluate gcd using Euclid's algorithm:

// C program to demonstrate Basic Euclidean Algorithm \#include <stdio.h>
// Function to return ged of a and b
int gcd(int a, int b)
\{
if (a == 0)
return b;
return $\operatorname{gcd}(\mathrm{b} \% \mathrm{a}, \mathrm{a})$;
\}
// Driver code
int main()
\{
int $a=10, b=15 ;$
// Function call
printf("GCD(\%d, \%d) = \%d\n", a, b, gcd(a, b));
$\mathrm{a}=35, \mathrm{~b}=10$;
printf("GCD (\%d, \%d) = \%d\n", a, b, gcd(a, b));
a = 31, b = 2;
printf("GCD(\%d, \%d) = \%d\n", a, b, gcd(a, b));
return 0;
\}
$\operatorname{GCD}(10,15)=5 \operatorname{GCD}(35,10)=5 \operatorname{GCD}(31,2)=1$
Time Complexity: O(Log min $(\mathrm{a}, \mathrm{b}))$
Auxiliary Space: $\mathrm{O}(\log (\min (a, b))$

Extended Euclidean Algorithm:

Extended Euclidean algorithm also finds integer coefficients x and y such that: $\mathrm{ax}+\mathrm{by}=$ $\operatorname{gcd}(a, b)$

Examples:

Input: $\mathrm{a}=30, \mathrm{~b}=20$
Output: gcd $=10, x=1, y=-1$
(Note that $30 * 1+20^{*}(-1)=10$)
Input: $a=35, b=15$
Output: gcd $=5, x=1, y=-2$
(Note that $35^{*} 1+15^{*}(-2)=5$)
The extended Euclidean algorithm updates the results of $\operatorname{gcd}(a, b)$ using the results calculated by the recursive call $\operatorname{gcd}(b \% a, a)$. Let values of x and y calculated by the recursive call be x_{1} and y_{1}. x and y are updated using the below
expressions.
$a x+b y=\operatorname{gcd}(a, b)$
$\operatorname{gcd}(a, b)=\operatorname{gcd}(b \% a, a)$
$\operatorname{gcd}(b \% a, a)=(b \% a) x_{1}+a y_{1}$
$a x+b y=(b \% a) x_{1}+a y_{1}$
$a x+b y=\left(b-[b / a]^{*} a\right) x_{1}+a y_{1}$
$a x+b y=a\left(y_{1}-[b / a]^{*} x_{1}\right)+b x_{1}$
Comparing LHS and RHS,
$x=y_{1}-? b / a ?^{*} x_{1}$
$y=x_{1}$

```
/ C++ program to demonstrate working of
// extended Euclidean Algorithm
#include <bits/stdc++.h>
using namespace std;
// Function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int *x, int *y)
{
    // Base Case
    if (a == 0)
    {
            *x = 0;
            *y = 1;
            return b;
    }
```

int $x 1, y 1 ; / /$ To store results of recursive call
int gcd = gcdExtended(b\%a, a, \&x1, \&y1);
// Update x and y using results of
// recursive call
*x = y1 - (b/a) * x1;
*y = x1;
return gcd;
\}
// Driver Code
int main()
\{
int $x, y, a=35, b=15$;
int $g=\operatorname{gcdExtended}(a, b, \& x, \& y)$;
cout << "GCD(" << a << ", " << b
<< ") = " << g << endl;

