
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AnAutonomous Institution

Accredited by NBA–AICTE and Accredited by NAAC – UGC with ‘A’Grade  

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(IoT and

Cybersecurity Including BCT)

COURSE NAME : Fundamentals Of Cryptography

II YEAR / III SEMESTER

Unit I

Topic : Euclidean and Extended Algorithm

1



The Euclidean algorithm is a way to find the greatest common divisor of two positive 
integers. GCD of two numbers is the largest number that divides both of them. A 
simple way to find GCD is to factorize both numbers and multiply common prime 
factors.
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Basic Euclidean Algorithm for GCD:
The algorithm is based on the below facts.
•If we subtract a smaller number from a larger one (we reduce a larger number), GCD 
doesn’t change. So if we keep subtracting repeatedly the larger of two, we end up with 
GCD.
•Now instead of subtraction, if we divide the smaller number, the algorithm stops when 
we find the remainder 0.



Below is a recursive function to evaluate gcd using Euclid’s algorithm:
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// C program to demonstrate Basic Euclidean Algorithm
#include <stdio.h>

// Function to return gcd of a and b
int gcd(int a, int b)
{

if (a == 0)
return b;

return gcd(b % a, a);
}

// Driver code
int main()
{

int a = 10, b = 15;

// Function call
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
a = 35, b = 10;
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
a = 31, b = 2;
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
return 0;

}

GCD(10, 15) = 5 GCD(35, 10) = 5 GCD(31, 2) = 1
Time Complexity: O(Log min(a, b))

Auxiliary Space: O(Log (min(a,b))
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Extended Euclidean Algorithm:
Extended Euclidean algorithm also finds integer coefficients x and y such that: ax + by = 

gcd(a, b)

Examples:
Input: a = 30, b = 20

Output: gcd = 10, x = 1, y = -1

(Note that 30*1 + 20*(-1) = 10)

Input: a = 35, b = 15

Output: gcd = 5, x = 1, y = -2

(Note that 35*1 + 15*(-2) = 5)

The extended Euclidean algorithm updates the results of gcd(a, b) using the results calculated by the recursive call 

gcd(b%a, a). Let values of x and y calculated by the recursive call be x1 and y1. x and y are updated using the below 

expressions.

ax + by = gcd(a, b)

gcd(a, b) = gcd(b%a, a)

gcd(b%a, a) = (b%a)x1 + ay1

ax + by = (b%a)x1 + ay1

ax + by = (b – [b/a] * a)x1 + ay1

ax + by = a(y1 – [b/a] * x1) + bx1

Comparing LHS and RHS,

x = y1 – ?b/a? * x1

y = x1
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/ C++ program to demonstrate working of 
// extended Euclidean Algorithm 
#include <bits/stdc++.h> 
using namespace std;

// Function for extended Euclidean Algorithm 
int gcdExtended(int a, int b, int *x, int *y) 
{ 

// Base Case 
if (a == 0) 
{ 

*x = 0; 
*y = 1; 
return b; 

} 

int x1, y1; // To store results of recursive call 
int gcd = gcdExtended(b%a, a, &x1, &y1); 

// Update x and y using results of 
// recursive call 
*x = y1 - (b/a) * x1; 
*y = x1; 

return gcd; 
} 

// Driver Code
int main() 
{ 

int x, y, a = 35, b = 15; 
int g = gcdExtended(a, b, &x, &y); 
cout << "GCD(" << a << ", " << b 

<< ") = " << g << endl;
return 0; 

} 


