Ve ~
-
g o \

NS

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore — 641 107
An Autonomous Institution

Accredited by NBA—AICTE and Accredited by NAAC — UGC with ‘A Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING(loT and
Cybersecurity Including BCT)

COURSE NAME : Fundamentals Of Cryptography

I YEAR /Il SEMESTER

Unit |
Topic : Euclidean and Extended Algorithm




The Euclidean algorithm is a way to find the greatest common divisor of two positive
integers. GCD of two numbers is the largest number that divides both of them. A
simple way to find GCD is to factorize both numbers and multiply common prime

factors.
36 =2x2x3x3
60 =2x2x3Xx5
GCD = Multiplication of common factors
=2Xx2Xx3
= 12

Basic Euclidean Algorithm for GCD:

The algorithm is based on the below facts.

*[f we subtract a smaller number from a larger one (we reduce a larger number), GCD
doesn’t change. So if we keep subtracting repeatedly the larger of two, we end up with
GCD.

*Now instead of subtraction, if we divide the smaller number, the algorithm stops when
we find the remainder 0.

HTYTIONS




Below is a recursive function to evaluate gcd using Euclid’s algorithm:

// C program to demonstrate Basic Euclidean Algorithm
#include <stdio.h>

// Function to return gcd of a and b
int gcd(int a, int b)

{
if (a == 0)
return b;
return gcd(b % a, a);
}

// Driver code
int main()

{

int a = 10, b = 15;

// Function call
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
a =35, b =10;
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
a =31, b=2;
printf("GCD(%d, %d) = %d\n", a, b, gcd(a, b));
return 0;

GCD(10, 15) = 5 GCD(35, 10) = 5 GCD(31, 2) =1
Time Complexity: O(Log min(a, b))
Auxiliary Space: O(Log (min(a,b))




Extended Euclidean Algorithm: o B
Extended Euclidean algorithm also finds integer coefficients x and y such that: ax + by =
gcd(a, b)

Examples:

Input: a =30, b =20

Output: gcd=10,x=1,y=-1

(Note that 30*1 + 20*(-1) = 10)

Input: a=35,b =15

Output: gcd=5,x=1,y=-2

(Note that 35*1 + 15*(-2) = 5)

The extended Euclidean algorithm updates the results of gcd(a, b) using the results calculated by the recursive call
gcd(b%a, a). Let values of x and y calculated by the recursive call be x, and y,. x and y are updated using the below
expressions.

ax + by = gcd(a, b)

gcd(a, b) = gcd(b%a, a)

gcd(b%a, a) = (b%a)x, + ay,

ax + by = (b%a)x, + ay,

ax + by = (b — [b/a] * a)x, + ay,

ax + by = a(y, — [b/a] * x;) + bx,

Comparing LHS and RHS,

X =y, —?bla? *x,

Yy =X




/ C++ program to demonstrate working of
// extended Euclidean Algorithm
#include <bits/stdc++.h>

using namespace std;

// Function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int *x, int *y)
{
// Base Case
if (a == 0)
{
*X = 0
*y = 1;
return b;

}

int x1, y1; // To store results of recursive call
int gcd = gcdExtended(b%a, a, &x1, &yl);

// Update x and y using results of
// recursive call

*x =yl - (b/a) * x1;

*y = x1;

return gcd;

}

// Driver Code

int main()

{
int x, y, a = 35, b = 15;
int g = gcdExtended(a, b, &x, &y);
cout << "GCD(" << a << ", "< b

<« ") =" << g << endl;

return 0:




