

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA-AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : Fundamentals Of Cryptography

II YEAR / III SEMESTER

Unit I Topic :Modular Arithematic

Congruence

In cryptography congruence(\cong) instead of equility(=)

Examples: $15 \cong 3 \pmod{12}$ $23 \cong 11 \pmod{12}$ $33 \cong 3 \pmod{10}$ $10 \cong -2 \pmod{12}$

So , $a \cong b \pmod{m}$ i.e a = km + b

STE INSIDIUTIONIS

 $38 \cong 2 \pmod{12}$ $38 \cong 14 \pmod{12}$ $5 \cong 0 \pmod{5}$ $10 \cong 2 \pmod{6}$ $13 \cong 3 \pmod{13}$ $2 \cong -3 \pmod{5}$

One more Analogy

NO of wraps (Quotient)	Remaining Thread (Remainder)	Congruence
1	25	35 ≅ 25 (mod 1)
2	15	35 ≅ 15 (mod 2)
3	5	35 ≅ 5 (mod 3)

Properties Of Modular Arithemetic

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n
2. [(a mod n) - (b mod n)] mod n = (a - b) mod n
3. [(a mod n) * (b mod n)] mod n = (a * b) mod n