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Representing

• A binary number with fractional part
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 …..

D =  bi 2
i

• Also called fixed-point numbers.
– The position of the radix point is fixed.

i = -m

corresponds to the decimal number

If the 
move, 
representation.

n-1
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Representing Fractional Numbers

part
b-m

radix point is fixed.

If the radix point is allowed to 
move, we call it a floating-point 
representation.
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Some Examples

1011.1 1x23 + 0x22 + 1x21 + 1x20 + 1x2

101.11 1x22 + 0x21 + 1x20 + 1x2-1 +

10.111 1x21 + 0x20 + 1x2-1 + 1x2-2 +

Some Observations:

• Shift right by 1 bit means divide by 2

• Shift left by 1 bit means multiply by

• Numbers of the form 0.111111…2 has a
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Examples

+ 1x2-1

+ 1x2-2

+ 1x2-3

= 11.5

= 5.75

= 2.875

2

2

has a value less than 1.0 (one).
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Limitations of
• In the fractional part, we can only

exactly.

– Other numbers have repeating bit

• Examples:
3/4 = 0.11
7/8 = 0.111
5/8 = 0.101
1/3 = 0.10101010101 [01] ….
1/5 = 0.001100110011 [0011] ….

1/10 = 0.0001100110011 [0011] ….
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of Representation
only represent numbers of the form x/2k

bit representations (i.e. never converge).

•More the number of bits, more 

accurate is the representation.

•We sometimes see: (1/3)*3 ≠ 1.
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Floating-Point Number Representation 
• For representing numbers with fractional

point is somewhere in between the number

fraction part).  Fixed-point representation

–Lacks flexibility.

–Cannot be used to represent very small or very 

1.7562 x 10+35, etc.).

• Solution :: use floating-point number representation.

– A number F is represented as a triplet <s, M, E> 
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Number Representation (IEEE-754)
fractional parts, we can assume that the fractional

the number (say, n bits in integer part, m bits in

representation

very large numbers (for example: 2.53 x 10-26,

number representation.

M, E> such that F = (-1)s M x 2E
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F = (-1)s M x 2E

• s is the sign bit indicating whether the number 

• M is called the mantissa, and is normally a fraction

• E is called the exponent, which weights the number by

Encoding:

• Single-precision numbers:

• Double-precision numbers:

total

total

s E
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whether the number is negative (=1) or positive (=0).

fraction in the range [1.0,2.0].

the number by power of 2.

total 32 bits, E 8 bits, M 23 bits

total 64 bits, E 11 bits, M 52 bits

M
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Points
• The number of significant digits depends

– 7 significant digits for 24-bit mantissa (23

• The range of the number depends on 

– 1038 to 10-38   for 8-bit exponent.

How many significant digits?

224 = 10x

24 log102 = x log1010

x = 7.2 -- 7 significant decimal

places
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Points to Note
depends on the number of bits in M.

(23 bits + 1 implied bit).

on the number of bits in E.

Range of exponent?

2127 = 10y

127 log102 = y log1010

y =38.1 -- maximum exponent value 

38 (in decimal)
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“Normalized” Representation

• We shall now see how E and M are actually

• Assume that the actual exponent of the number

• Permissible range of E: 1 ≤ E ≤ 254 (the

• Encoding of the exponent E:

– The exponent is encoded as a biased value: E

where BIAS = 127 (28-1 – 1) for single-precision,

double-precision.
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Representation

actually encoded.

number is EXP (i.e. number is M x 2EXP).

all-0 and all-1 patterns are not allowed).

E = EXP + BIAS

precision, and BIAS = 1023 (211-1 – 1) for 
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• Encoding of the mantissa M:

–The mantissa is coded with an implied leading 1

M = 1 . xxxx...x

–Here, xxxx…x denotes the bits that are

get the extra leading bit for free.

–When xxxx…x = 0000…0, M is minimum

–When xxxx…x = 1111…1, M is maximum

10-10-2022

implied leading 1 (i.e. in 24 bits).

are actually stored for the mantissa. We 

minimum (= 1.0).

maximum (= 2.0 – ε).
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An Encoding

• Consider the number F = 15335
1533510 = 111011111001112 = 1.1101111100111

• Mantissa will be stored as: M = 1101111100111

• Here, EXP = 13, BIAS = 127.  E
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Encoding Example

1.1101111100111 x 213

1101111100111 00000000002

E = 13 + 127 = 140 = 100011002
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Another

• Consider the number F = -3.75
-3.7510   = -11.112 = -1.111 x 21

• Mantissa will be stored as:

• Here, EXP = 1, BIAS = 127. 
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Another Encoding Example

M = 111000000000000000000002

E = 1 + 127 = 128 = 100000002
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Special

• When E = 000…0

– M = 000…0 represents the value 0.

– M ≠ 000…0 represents numbers very close

to 0.

• When E = 111…1

– M = 000…0 represents the value ∞ (infinity).

– M ≠ 000…0 represents Not-a-Number (NaN).
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Special Values

close

(infinity).

(NaN).

NaN represents cases when no numeric 

value can be determined, like 

uninitialized values, ∞*0,

∞-∞, square root of a negative

number, etc.

Also referred to as de- normalized

numbers.

Zero is represented by the all-zero string.
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Summary of Number

NaN

-Denorm- -Normalized

-0

Denormal numbers have very small magnitudes 

them will lead to an exponent that is below the minimum

• Mantissa with leading 0’s and exponent field 

• Number of significant digits gets reduced in the 
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Number Encodings

NaN

+Denorm +Normalized +

+0

very small magnitudes (close to 0) such that trying to normalize

the minimum possible value.

field equal to zero.

the process.
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Rounding

• Suppose we are adding two numbers (say, 

– We add the mantissa values after shifting one of 

– We take the first 23 bits of the sum, and discard 

• IEEE-754 format supports four rounding modes:

a) Truncation

(similar to ceiling function) 

(similar to floor function)
b) Round to +∞

c) Round to -∞

d) Round to nearest
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Rounding

in single-precision).

shifting one of them right for exponent alignment.

discard the residue R (beyond 32 bits).

modes:

ceiling function) 

function)
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• To implement rounding, two temporary

– Round Bit (r): This is equal to the

– Sticky Bit (s):  This the logical OR 

• Decisions regarding rounding can

a) R > 0:

b) R = 0.5:

c)  R > 0.5:

If r + s = 1 

If r.s’ = 1 

If r.s = 1
// ‘+’ is logical 

• Renormalization after Rounding:

– If the process of rounding generates a result that is not in normalized form, 

need to re-normalize the result.
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two temporary bits are maintained:

the MSB of the residue R.

OR of the rest of the bits of the residue R.

can be taken based on these bits:

is logical OR, ‘.’ is logical AND

result that is not in normalized form, then we 
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FLOAT

Floating Point Addition/Subtraction

• Two numbers: M1 x 2E1 and M2 x 

• Basic steps:

–Select the number with the smaller exponent (i.e. 

mantissa right by (E1-E2) positions.

–Set the exponent of the result equal to the

–Carry out M1 ± M2, and determine the sign

–Normalize the resulting value, if necessary.
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TING-POINTARITHMETIC

Point Addition/Subtraction

M2 x 2E2 , where E1 > E2 (say).

the smaller exponent (i.e. E2) and shift its 

to the larger exponent (i.e. E1).

the sign of the result.

necessary.
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Addition Example
• Suppose we want to add F1 = 270.75

F1 = (270.75)10 = (100001110.11)2 =

F2 = (2.375)10 = (10.011)2 = 1.0011

• Shift the mantissa of F2 right by 8 – 1

1000 0111 0110 0000 0000

1 0011 0000 0000

1000 1000 1001 0000 0000

• Result: 1.00010001001 x 28
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Example
270.75 and F2 = 2.375

= 1.0000111011 x 28

1.0011 x 21

1 = 7 positions, and add: 

0000 0000

0000 0000 0000 000

0000 0000 0000 000 Residue
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Subtraction

• Suppose we want to subtract F2 = 224 from

F1 = (270.75)10 = (100001110.11)2 = 1.0000111011

F2 = (224)10 = (11100000)2 = 1.111 x 27

• Shift the mantissa of F2 right by 8 – 7 = 1 position,

1000 0111 0110 0000 0000 0000

111 0000 0000 0000 0000 0000 000

0001 0111 0110 0000 0000 0000 000

• For normalization, shift mantissa left 3 positions,

• Result: 1.01110110 x 25
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Subtraction Example

from F1 = 270.75

1.0000111011 x 28

position, and subtract:

positions, and decrement E by 3.
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Floating-Point

• Two numbers: M1 x 2E1 and  M2 x

• Basic steps:

–Add the exponents E1 and E2 and 

–Multiply M1 and M2 and determine

–Normalize the resulting value, if necessary.
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Point Multiplication

M2 x 2E2

and subtract the BIAS.

determine the sign of the result.

necessary.
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Floating-Point Division

• Two numbers: M1 x 2E1 and  

• Basic steps:

–Subtract the exponents E1 and

–Divide M1 by M2 and determine

–Normalize the resulting value, if
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Division

and  M2 x 2E2

and E2 and add the BIAS.

determine the sign of the result.

if necessary.
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Division Example
• Suppose we want to divide F1 = 270.75 by F2 = 

F1 = (270.75)10 = (100001110.11)2 = 1.0000111011

F2 = (-2.375)10 = (-10.011)2 =  -1.0011

• Subtract the exponents: 8 – 1 = 7

• Divide the mantissas: 0.1110010

• Result: 0.1110010 x 27

• After normalization: 1.110010 x 26
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Example
by F2 = -2.375

1.0000111011 x 28

1.0011 x 21
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