

Consistency of premies and Indirect Method of proof.

consistent:

A set of formulas Hi. Hz. - . . . Hm is Said to be

consistent is their conjunction has the truth value T.

CO CHINHAM - AHM) -> AVIA where A is any formula.

Inconsistent:

A see of formular H. Mr. ... Hm is inconsistent if their conjunction implies a contradiction.

(10) (H, A H_A A A Hm) => RATE where R is any formula Indirect method of Proof:

The notion of inconsistency is used in a procedure called proof by contradiction (or) reduction (or) reduction (or) reduction (or) reduction (or) reduction (or)

Morking Rule - andirect method

- as a new premise.
- 2. From the new Premise, together with the given premiser, derive a contradiction. 3. Assert the derived conclusion as a logical inference from the premiser.

) Show that the following Sets of mensions are inconsistent, P-Da, P-R. a->4R, p. 80lu:

Skep	ovivab ac	dean	Rule	reason	
1	p-;	> &	P		Premise
2	. a-	Sr€	p		Promise
3	р	ALE	Ψ.	(1),(2)	Hyp Syllogira
9		P -	P	Give	
5 vo n 5	7.00	TR	T	(3),(4)	modul povers.
6	· Þ	→R	P	Give	premise
4		TP.		(5)]() modus tollen .
8		PATP	τ	(+).(+)	D. ODED PAGEJ.
-	7.	F	Co	dradid	tion
HE (E)	he fails Jack fails Jack read uneducate	high s high s li a	g clair Chool, Chool, W Pot of	hen he books,	inconsistent. ough illness. is useducated. then he is
(h) So an Solu: E S	ck misses d heads a : Jack miss : Jack fei : Jack hea : Jack is	many c lot ? ner man Is high dr a le	st booke y claum r school. ok of bo	ier thro	

_	MEATORS		www.snsgroups.com
The p	remies are	anan,4	S-H, A-TH & EAA
Steps	derivation	Rule	Recubn
1	E-S	P	Criven premuse
2	8->14	P	9
3	E→ H	т	(1),(2) hypothetical sylloger
A	$\mu r \leftarrow A$	P	Given Premise
5	ATC-H	7	a), poaces ta orp
4	AFE-37A	7	(3) (5) Hypo, syllo.
7	YEVYA	$\overline{}$	(6), p->02-TPVQ
. 8	7 (EXA)	~	(I), TEVYAZ=>T(EXA)
9	EAA	P.	Given premise
10.	KEITK (AKE)	r ca	(8),(4), p,Q=> px Q
11.	F	the to be to	
By Indi Solu:	red prost, 89	now that	p→Q,Q→R, PVR→PR
		esult rs	R. Include TR au a
hew pre	derivatio~	Rule	Reason
	Q→R	P	given
1	TR	p	additional premie
3	Ta	-	(1),(2) Modus tollers.
da .	Pode	P	Griven Premise
5.	¬P	7	(3),(4) Modur 2011au.
6.		P	Criven
Ч	R	7	70, Tra => a dis. syllo 0,6

(4) Show that TIPMAT follows from TPHTA. Sale. We introduce 77 (MQ) as an additional premite and show that this additional premise leads to Contradiction Steps derivation Rule Recupon P additional Prenule 74(1/6) (1)、竹り台タタ DIO T (2), Ma⇒P PYKOF Given premise (W), PAQ=)P 7P (3) (5) P.Q=)p(Q. PATP (b) Contradiction, Show that the following implication by using underect method. (R-sta), RVS, S-sta, p-a->TP. Solu, To use the indirect method, we will include TYPES P as an additional premie and prove a contradiction. Recuon Stem derivation Rule additional premite. Given Prenuje DUG (1) (2) Moder poner 8. Given premise RATE Given Premise S->7Q (W), 45) equivalence. (RVS) -> YQ POR, WAR => PUROR] Citizen Treentse. (6), (7) Modul Ponen (3), (8) P.Q=) PMQ (9). Contradiction. 0