SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

Tantology: A statement that is true for all possible values of its, propositional variables is called a Tautology corruniversally valid formula corra logical touter. Eq: prip is always a tautology. Contraduction A statement that is always false for the touthe values of the components is called a Contradiction Eq: payp is always a contradiction D Using touth table show that the proposition PVHIPAGED is a tautology Solu prylpag) M(pAQ) PAQ P 9 7 F - \overline{T} τ F F F π F F F T F T Since all truth values of a given formula are true given formula is a tanto logy hence that (1919) 19 is a contradiction 2) PTONE 9 TR TIPAP 7910719 F T F 7 T F F 7 F F T F are the touter values of given formula are all falle, Since formula is a contradiction. the given

solu	-	-	1	1 1		-	
	P	2	(Tpog)	2-7.0 (י/<-(ף<קד	2-3P)	at i de la
	7	т	T	T	T		
	T	F	т	T	Τ		
	F	T	T	F	E		
14	-		F	1 1	i neife		
Con	tras	osi bi	ve				
	-71	0	in in a	condi	tional St	otement	, the
19.	Jj ₹7 €	0	in in a	he condi	kional sk traposikive	icitement 2 .ef p	, the →2
19.	⊐j ₹Γ €	Р- јъ	sq is a caued t	the con	Walpas to ve	- ref p	· ~99 .
19. Note	J → TP	P- Js Conc	sq is a caused t	statim	ent p-sq	and and	i⇒q .
19. Note	J → TP	P- Js Conc	sq is a called t ditional ve 79-	statim	ent p-sq oure sa	and and	i⇒q .
19. Note	J → TP	P- Ja Conc osiEiv	sq is a called t ditional ve 79-	statimu statimu stp. J	ent p-39 nove 80 able	i and me tru	i⇒q .
19. Note	J → TP	P- Ja Conc osiEiv	sq is a called t litional re 79-	he con statimu »Tp I Fruile t	ent p-39 nove 80 able	i and me tru	i⇒q . ita
19. Note	The trap	P- Ja Conc osiEiv	sq is a called t litional re 79-	he con statimu »Tp I Fruile t	ent p-39 nove 80 able	i and me tru	i⇒q . ita
19. Note	The trap	P- Ja Conc osiEin	sq is a called t litional re 79-	he con statimu »Tp I Fruile t	ent p-39 nove 80 able	i and me tru	i⇒q . ita

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

Give the converse and the contrapositive of the implication " if it is raining, then I get wet Bolu: P: It is raining Q: I get wet. Converse: If I get wer, then it is raining. Contrapositive: (40 -> 4p) If I donot get wet, then is not raining 2) What are the contrapositive, the converse, and the inverse of the conditional statement. "It you work hand then you will be rewarded." Solr: p: you work hard @: you will be rewarded. Convere: @ > p You will be rewarded only 11 you work hard. Contrapositive: 700->7p If you will not be rewarded then you will not work hand . Inverse: 7p -> TQ. If you will not work hand than you will not be revaided.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

Logical Equivalence: Let p and q be two statement formulas, P is said to be logically equivalent to 2 if p and q have the same set of truth values or equivalently p and q are logically equivalent 13 pag is a tantology. The propositions p and q are called logically equivalent if p ~ q is a bantdogy. Notation: (1) praq (11) p=9 el. Show that p-a unpra are logically equivalent (a) (p> Q= TPV Q) Proof: we should prove that (ping) as TPVQ. nes to prove (p-sa) is a baubology (p -> a) <> TPV& TPVQ G. TP PAC P F T 77 T T F F T F F T Τ F F F ·· (p->@) 2=> TpvQ 2. When do you say that two compound propositions one equivalent? solu. The two compound propositions are soud to be equivalent if they have identical truth values.

SNS COLLEGE OF ENGINEERING

Coimbatore - 641 107

Prod	P	el.	p4>9	p-29	2-3P	(p->9)	1(2-1
33	т	Т	T	т	т	T.	o o ji
	Т	F	F	F	τ	F	
·	F	T	F	T	F	F	14 121
	٢	F	. T	τ	T	44	
Fr	om	Cruth	, table	e we si	ee that	+ pas	9 and
IP.	39)	19.	sp) &	howe y	same	- tringe	vale
He	nce	D 4	->9 =	(p->9)	1(9->	P)	
Ð	Pro m	1	lows	1 0			
Sta	tr.	Junia		77172			
-	- 10		= (A VO	UPA LL			
	10	10		Tova	2		
1. 2.4	(2)	2 76	(q) =	בייקך =	7		
P.200	<u>};</u>	2 76	(q) =	= Thate	7		teri.
Proo	<u>};</u>	2 76	$(q) \equiv \gamma$ $\gamma \equiv \gamma$ pvq	= Thate	-	79	2011
Proo	(2: 5 41 P	2 MB	(q) =) = 7	10×79	-	79	
Proo	(2) <u>1-</u> 	2 MB	$(q) \equiv 7$ $) \equiv 7$ pvq	10×79) [410 A	719	
Proo	(2) 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	p yp	$(q) \equiv 7$ $) \equiv 7$ pvq	10×79) [410 A	79	
8200	(2) 11 11 12 12 12 12 12 12 12 12 12 12 12	P YA	$(q) \equiv 7$ $) \equiv 7$ pvq	10×79) [410 A	79	
8200	(2) 11 11 12 12 12 12 12 12 12 12 12 12 12	P YA P V9 Q T F T	$ \frac{(q)}{p \vee q} = 7 $ $ \frac{p \vee q}{T} $ $ T $ $ T $ $ F $	10×79	E F F Vov	79	
P.200	(2) 11 11 12 12 12 12 12 12 12 12 12 12 12	P YA P V9 Q T F F	$ \frac{(q)}{p \vee q} = 7 $ $ \frac{p \vee q}{T} $ $ T $ $ T $ $ F $	= 1pv79 1px79 7(pv9) F F F	F F F T P	719	
P.200	P T F F F F F F F F F	2 76 (p v9 9 T F F F	(q) =) = 7 pvq T T F) = 7	= 1pv79 1px79 7(pv9 F F F T	F F F T P		
P.200	P T F F F F F F F F F	2 46 (p v9 9 7 F 7 F 7 9 9	$ \frac{(q)}{p \vee q} = \frac{1}{p \vee q} $ $ \frac{T}{T} = \frac{T}{T} $ $ F = \frac{1}{p \wedge q} $ $ \frac{p \wedge q}{p \wedge q} $	= 1pv79 1px79 7(pv9 F F F T	F F F T P		

SNS COLLEGE OF ENGINEERING

Coimbatore - 641 107

8.NO	Equivalence	Name .
ι.	PV9 => 9 VP : pAq => 9 Ap	commutative law
.2.	PV(qv1) => (pvq) VY PA(qA1) => (DA9) A8	Associative bus
Ъ.	prique) = (pro) r(pre) prio va) = (pro) r(pre)	Distributive law
Å.	4(pvq) 2= 7p179 7(p19) = 7pv79	Demorgan's lawy
1.	PARASPY PAPASP	I dempotent laws
6.	PACPAQ200P	A boor piton laws
٦.	PNT 4> P PNF 4> P	Identity laws
1.20	PVT ↔ T PAF 2=>F	porvination laws
9.	フレリンシア	Double negation law
10.	PVYP 4=> T (0) YPVPLE) T PAYP 6=> F (0) YPAP2=> F	Negation laws

show that (p-sa) 1(R-	
(P->@) A(R->@)	Reasons.
200 (TIPVE) A (TRVE) 200 (TIPATR) VO 200 TIPVR) VO 200 TIPVR) VO 200 TIPVR) ->0.	Since p-Jaco TpvQ Distributive law Demorgani law Bince TpvQ2-> p-70
Show that p->(@-> AZ.	
P→(G→R)	Realony .
P>(TOVR)	Since americana
25 TPV (TOUR)	Since p-16/=> Thva
23 (HOVIG)VR 23 T(MA)VR 23 (MA) -> R	De Morgani lani Since TPV& Deporto.
	10 Plan Hoat D-> (0->P)
without Using Lower Lab	י) ← קד
LHS: P->(a->p)	Reason .
1-HS: P->(a->p) (=> TPV(7@vp)	TP>()
LHS: P->(Q->p) L=> TPV(TQVp) L=> (TQVp)V7p	Reason .
LHS: P->(a->p) (=> TPV(7QVp)	Reason. .: h-ra so Tova
LO (TONP) VIP	Reason. .: h-) a so Tpva connutative law

Tautological implications A statement p is said said to tautologically imply a statement or it and only it pass is a tantology in this case, we write p=> a, read as " p implies as" (as (p ⇒ @ 1 p tantalogically implies @) iff p=> @ is toutology. By P => Q, - thin p is called antecedent and () is called consequent. prove that (p-sa) 1 (0->R) => p>R D Fet S (paca) (Q and) -> (par) Proof: To prove : S is a tautology 3 PAR P->Q Q-R R a P T T T Τ T F T T F F T F T F Т F T T F τ Т T F C. T T F F F F F · (p-)a)A(Q->R) => (p->R) The above implication is called as hypothetical Note: Syllogism 100) Chain rule (01) law of Syllogion.