SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade
Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 - Digital Circuits
II YEAR / III SEMESTER
Unit I- MINIMIZATION TECHNIQUES AND LOGIC GATES
Topic : Karnaugh map Minimization

Karnaugh map Minimization

we have simplified the Boolean functions using Boolean postulates and theorems. It is a time consuming process and we have to re-write the simplified expressions after each step.
To overcome this difficulty, Karnaugh introduced a method for simplification of Boolean functions in an easy way. This method is known as Karnaugh map method or K-map method. It is a graphical method, which consists of 2^{n} cells for ' n ' variables. The adjacent cells are differed only in single bit position.
K-Maps for 2 to 5 Variables
K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables. Now, let us discuss about the K-Maps for 2 to 5 variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of variables is two. The following figure shows $\mathbf{2}$ variable K-Map.

or

3 Variable K-Map

The number of cells in 3 variable K-map is eight, since the number of variables is three. The following figure shows $\mathbf{3}$ variable K-Map.

X	00	01	11	10
0	m_{0}	m_{1}	m_{3}	m_{2}
1	m_{4}	m_{5}	m_{7}	m_{6}

-There is only one possibility of grouping 8 adjacent min terms.
-The possible combinations of grouping 4 adjacent min terms are $\left\{\left(m_{0}, m_{1}, m_{3}, m_{2}\right),\left(m_{4}, m_{5}\right.\right.$, $\left.m_{7}, m_{6}\right),\left(m_{0}, m_{1}, m_{4}, m_{5}\right),\left(m_{1}, m_{3}, m_{5}, m_{7}\right),\left(m_{3}, m_{2}, m_{7}, m_{6}\right)$ and $\left.\left(m_{2}, m_{0}, m_{6}, m_{4}\right)\right\}$.
-The possible combinations of grouping 2 adjacent min terms are $\left\{\left(m_{0}, m_{1}\right),\left(m_{1}, m_{3}\right),\left(m_{3}\right.\right.$, $\left.m_{2}\right),\left(m_{2}, m_{0}\right),\left(m_{4}, m_{5}\right),\left(m_{5}, m_{7}\right),\left(m_{7}, m_{6}\right),\left(m_{6}, m_{4}\right),\left(m_{0}, m_{4}\right),\left(m_{1}, m_{5}\right),\left(m_{3}, m_{7}\right)$ and $\left(m_{2}\right.$, $\left.\left.m_{6}\right)\right\}$.
-If $\mathrm{x}=0$, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The following figure shows 4 variable K-Map.

$w X^{Y}$	00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}
01	m_{4}	m_{5}	m_{7}	m_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_{8}	m_{9}	m_{11}	m_{10}

5 Variable K-Map

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5 . The following figure shows 5 variable K-Map.

$\mathrm{V}=1$				
$w X \underbrace{Y Z}{ }_{00}$		01		10
00	m_{16}	m_{17}	m_{19}	m_{18}
01	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{28}	m_{29}	m_{31}	m_{30}
10	m_{24}	m_{25}	m_{27}	

Example

Let us simplify the following Boolean function, $\mathbf{f} \boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$
$=\mathbf{W X}^{\prime} \mathbf{Y}^{\prime}+\mathbf{W Y}+\mathbf{W}^{\prime} \mathbf{Y Z} \mathbf{Z}^{\prime}$ using K-map.
The given Boolean function is in sum of products form. It is having 4 variables $\mathrm{W}, \mathrm{X}, \mathrm{Y} \& \mathrm{Z}$. So, we require $\mathbf{4}$ variable \mathbf{K}-map. The $\mathbf{4}$ variable \mathbf{K}-map with ones corresponding to the given product terms is shown in the following figure.

$W X Y^{2}$		01	11	10
00				1
01				1
11			1	1
10	1	1	1	1

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are three possibilities of grouping 4 adjacent ones. After these three groupings, there is no single one left as ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 variable K-map with these three groupings is shown in the following figure.

Here, we got three prime implicants $W X^{\prime}$, WY \& YZ^{\prime}. All these prime implicants are essential because of following reasons.
-Two ones ($\mathrm{m}_{8} \& \mathrm{~m}_{9}$) of fourth row grouping are not covered by any other groupings. Only fourth row grouping covers those two ones.

- Single one (m_{15}) of square shape grouping is not covered by any other groupings. Only the square shape grouping covers that one.
-Two ones ($\mathrm{m}_{\mathbf{2}}$ \& m_{6}) of fourth column grouping are not covered by any other groupings. Only fourth column grouping covers those two ones.
Therefore, the simplified Boolean function is

$$
f=W X^{\prime}+W Y+Y Z^{\prime}
$$

Let us simplify the following Boolean function, $f(X, Y, Z)=\Pi M(0,1,2,4)$
using K-map.
The given Boolean function is in product of Max terms form. It is having 3 variables X, Y \& Z. So, we require 3 variable K-map. The given Max terms are $M_{0}, M_{1}, M_{2} \& M_{4}$. The 3 variable K-map with zeroes corresponding to the given Max terms is shown in the following figure.

$Y+Z$
There are no possibilities of grouping eitner ४ adjacent zeroes or 4 adjacent zeroes. Inere are three possibilities of grouping 2 adjacent zeroes. After these three groupings, there is no single zero left as ungrouped. The $\mathbf{3}$ variable K-map with these three groupings is shown in the following figure.

Here, we got three prime implicants $\mathrm{X}+\mathrm{Y}, \mathrm{Y}+\mathrm{Z} \& \mathrm{Z}+\mathrm{X}$. All these prime implicants are essential because one zero in each grouping is not covered by any other groupings except with their individual groupings.
Therefore, the simplified Boolean function is
$\mathrm{f}=X+Y . Y+Z . Z+X$

Any Query????

Thank you......

