SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 - Digital Circuits
II YEAR / III SEMESTER
Unit I- MINIMIZATION TECHNIQUES AND LOGIC GATES
Topic : De-Morgan"s Theorem - Principle of Duality - Boolean
expression - Minimization of Boolean expressions

Theorems of Boolean Algebra

The following two theorems are used in Boolean algebra.

- Duality theorem
- DeMorgan's theorem

Duality Theorem

This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.
Let us make the Boolean equations relations
that we discussed in the section of Boolean postulates and basic laws into two groups. The following table shows these two groups.

Group1	Group2
$x+0=x$	$\times .1=x$
$x+1=1$	$\times .0=0$
$x+x=x$	\times x \times = \times
$x+x^{\prime}=1$	$x \cdot x^{\prime}=0$
$x+y=y+x$	$x \cdot y=y-x$
$x+y+z=x+y+z$	$\times \cdot y \cdot z=x \cdot y \cdot z$
x. $y+z=\times \cdot y+x \cdot z$	$y \cdot z=x+y \cdot x+z$

DeMorgan's Theorem

This theorem is useful in finding the complement of Boolean function. It states that the complement of logical OR of at least two Boolean variables is equal to the logical AND of each complemented variable.
DeMorgan's theorem with 2 Boolean variables x and y can be represented as

$$
\boldsymbol{x}+\boldsymbol{y} \boldsymbol{y}^{\prime}=x^{\prime} \cdot y^{\prime}
$$

The dual of the above Boolean function is

$$
x \cdot y^{\prime}=\mathrm{x}^{\prime}+\mathrm{y}^{\prime}
$$

Example 1

Let us simplify the Boolean function, $f=p^{\prime} q r+p q^{\prime} r+p q r^{\prime}+p q r$

We can simplify this function in two methods.

Method 1

Given Boolean function, $f=p^{\prime} q r+p q^{\prime} r+p q r^{\prime}+p q r$.
Step 1 - In first and second terms r is common and in third and fourth terms $p q$ is common. So, take the common terms by using Distributive law.

$$
\Rightarrow \mathrm{f}=p^{\prime} q+p q^{\prime} \mathrm{r}+\mathrm{pq} \quad r^{\prime}+r
$$

Step 2 - The terms present in first parenthesis can be simplified to Ex-OR operation. The terms present in second parenthesis can be simplified to ' 1 ' using Boolean postulate

$$
\Rightarrow f=p \oplus q r+p q 1
$$

Step 3 - The first term can't be simplified further. But, the second term can be simplified to pq using Boolean postulate.

$$
\Rightarrow \mathrm{f}=p \oplus q \mathrm{r}+\mathrm{pq}
$$

Method 2

Given Boolean function, $f=p^{\prime} q r+p q^{\prime} r+p q r^{\prime}+p q r$.
Step 1 - Use the Boolean postulate, $x+x=x$. That means, the Logical OR operation with any
Boolean variable ' n ' times will be equal to the same variable. So, we can write the last term pqr two more times.

$$
\Rightarrow \mathrm{f}=\mathrm{p} \mathrm{q}^{\prime} \mathrm{r}+\mathrm{pq} \mathrm{q}^{\prime}+\mathrm{pqr} r^{\prime}+\mathrm{pqr}+\mathrm{pqr}+\mathrm{pqr}
$$

Step 2 - Use Distributive law for $1^{\text {st }}$ and $4^{\text {th }}$ terms, $2^{\text {nd }}$ and $5^{\text {th }}$ terms, $3^{\text {rd }}$ and $6^{\text {th }}$ terms.

$$
\Rightarrow \mathrm{f}=\mathrm{qr} p^{\prime}+p+\mathrm{pr} q^{\prime}+q+\mathrm{pq} r^{\prime}+\boldsymbol{r}
$$

Step 3 - Use Boolean postulate, $x+x^{\prime}=1$ for simplifying the terms present in each parenthesis.

$$
\Rightarrow \mathrm{f}=\mathrm{qr} \mathbf{1}+\mathrm{pr} \mathbf{1}+\mathrm{pq} \mathbf{1}
$$

Step 4 - Use Boolean postulate, x. 1 = x for simplifying the above three terms.

$$
\begin{aligned}
& \Rightarrow \mathrm{f}=\mathrm{qr}+\mathrm{pr}+\mathrm{pq} \\
& \Rightarrow \mathrm{f}=\mathrm{pq}+\mathrm{qr}+\mathrm{pr}
\end{aligned}
$$

Any Query????

Thank you......

