SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 - Digital Circuits
II YEAR / III SEMESTER
Unit I- MINIMIZATION TECHNIQUES AND LOGIC GATES
Topic : Introduction to Digital circuits and Number systems

Number system

If base or radix of a number system is ' r ', then the numbers present in that number system are ranging from zero to $r-1$. The total numbers present in that number system is ' r '.
The following number systems are the most commonly used.
-Decimal Number system
-Binary Number system

- Octal Number system
-Hexadecimal Number system

Example

Consider the decimal number 1358.246. Integer part of this number is 1358 and fractional part of this number is 0.246 . The digits $8,5,3$ and 1 have weights of $100,101,10^{2}$ and 10^{3} respectively. Similarly, the digits 2,4 and 6 have weights of $10^{-1}, 10^{-2}$ and 10^{-3} respectively.
Mathematically, we can write it as
$1358.246=\left(1 \times 10^{3}\right)+\left(3 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+\left(8 \times 10^{0}\right)+\left(2 \times 10^{-1}\right)+\left(4 \times 10^{-2}\right)+\left(6 \times 10^{-3}\right)$

Example

Consider the binary number 1101.011. Integer part of this number is 1101 and fractional part of this number is 0.011 . The digits $1,0,1$ and 1 of integer part have weights of $2^{0}, 2^{1}, 2^{2}, 2^{3}$ respectively. Similarly, the digits 0,1 and 1 of fractional part have weights of $2^{-1}, 2^{-2}, 2^{-3}$ respectively.
Mathematically, we can write it as

```
1101.011 = (1\times2 2 ) + (1\times < 2})+(0\times\mp@subsup{2}{}{1})+(1\times\mp@subsup{2}{}{0})+(0\times\mp@subsup{2}{}{-1})+(1\times\mp@subsup{2}{}{-2})+(1\times\mp@subsup{2}{}{-3}
```


Example

Consider the octal number 1457.236. Integer part of this number is 1457 and fractional part of this number is 0.236 . The digits $7,5,4$ and 1 have weights of $8^{0}, 8^{1}, 8^{2}$ and 8^{3} respectively.
Similarly, the digits 2,3 and 6 have weights of $8^{-1}, 8^{-2}, 8^{-3}$ respectively.
Mathematically, we can write it as
$1457.236=\left(1 \times 8^{3}\right)+\left(4 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right)+\left(2 \times 8^{-1}\right)+\left(3 \times 8^{-2}\right)+\left(6 \times 8^{-3}\right)$

Mathematically, we can write it as for hexadecimal
1A05.2C4 $=\left(1 \times 16^{3}\right)+\left(10 \times 16^{2}\right)+\left(0 \times 16^{1}\right)+\left(5 \times 16^{0}\right)+\left(2 \times 16^{-1}\right)+\left(12 \times 16^{-2}\right)+\left(4 \times 16^{-3}\right)$

Decimal to Binary Conversion

Example

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25 .
Step 1 - Division of 58 and successive quotients with base 2.

Operation	Quotient	Remainder
58/2	29	$0 L S B$
29/2	14	1
14/2	7	0
7/2	3	1
$3 / 2$	1	1
1/2	0	1 MSB

Step 2 - Multiplication of 0.25 and successive fractions with base 2.

Operation	Result	Carry	
0.25×2	0.5	0	
0.5×2	1.0	1	
-	0.0	-	
	$\Rightarrow .25$	$10=\mathbf{0 1}$	2

Therefore, the binary equivalent of decimal number 58.25 is 111010.01 .

Decimal to Octal Conversion

Example
Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25 .
Step 1 - Division of 58 and successive quotients with base 8.

Operation	Quotient	Remainder
$58 / 8$	7	$\mathbf{2}$
$7 / 8$	0	$\mathbf{7}$

$$
\Rightarrow 58_{10}=72_{8}
$$

Step 2 - Multiplication of 0.25 and successive fractions with base 8 .

Operation	Result	Carry
0.25×8	2.00	2
-	0.00	-
	\Rightarrow	$.25{ }_{10}=.28$

Therefore, the octal equivalent of decimal number 58.25 is 72.2 .

Example

Consider the decimal number 58.25. Here, the integer part is 58 and decimal part is 0.25 .
Step 1 - Division of 58 and successive quotients with base 16.

Operation	Quotient	Remainder
$58 / 16$	3	$10=\mathrm{A}$
$3 / 16$	0	3
	$\Rightarrow 58_{10}=3 A_{16}$	

Step 2 - Multiplication of 0.25 and successive fractions with base 16.

Operation	Result	Carry	
0.25×16	4.00	4	
-	0.00	-	
	$\Rightarrow .25$	$10=.416$	

Therefore, the Hexa-decimal equivalent of decimal number 58.25 is 3 A .4 .

Binary Number to other Bases Conversion

Binary to Decimal Conversion

Example

Consider the binary number 1101.11.
Mathematically, we can write it as $1101.11_{2}=\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(1 \times 2^{-2}\right)$
$\Rightarrow 1101.11_{2}=8+4+0+1+0.5+0.25=13.75$
$\Rightarrow 1101.11_{2}=13.75_{10}$

Binary to Octal Conversion

Example

Consider the binary number 101110.01101.
Step 1 - Make the groups of 3 bits on both sides of binary point. 101110.01101
Here, on right side of binary point, the last group is having only 2 bits. So, include one zero on extreme side in order to make it as group of 3 bits. $\Rightarrow 101110.011010$
Step 2 - Write the octal digits corresponding to each group of 3 bits.
$\Rightarrow 101110.011010{ }_{2}=56.32_{8}$

Any Query????

Thank you......

