

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC306 – Digital Circuits

II YEAR / III SEMESTER

Unit I- MINIMIZATION TECHNIQUES AND LOGIC GATES Topic : Introduction to Digital circuits and Number systems

Introduction to Digital circuits and Number systems / 19EC306/ Digital circuits/Mr.S.HARIBABU/ECE/SNSCE

Number system

If base or radix of a number system is 'r', then the numbers present in that number system are ranging from zero to r-1. The total numbers present in that number system is 'r'. The following number systems are the most commonly used. •Decimal Number system

- •Binary Number system •Octal Number system
- •Hexadecimal Number system

Example

05-10-2023

Consider the **decimal number 1358.246**. Integer part of this number is 1358 and fractional part of this number is 0.246. The digits 8, 5, 3 and 1 have weights of 100, 101, 10^2 and 10^3 respectively. Similarly, the digits 2, 4 and 6 have weights of 10^{-1} , 10^{-2} and 10^{-3} respectively. **Mathematically**, we can write it as

 $1358.246 = (1 \times 10^3) + (3 \times 10^2) + (5 \times 10^1) + (8 \times 10^0) + (2 \times 10^{-1}) + (4 \times 10^{-2}) + (6 \times 10^{-3})$

Example

Mathematically, we can write it as

 $1101.011 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (0 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3})$

Example

Consider the **octal number 1457.236**. Integer part of this number is 1457 and fractional part of this number is 0.236. The digits 7, 5, 4 and 1 have weights of 8⁰, 8¹, 8² and 8³ respectively. Similarly, the digits 2, 3 and 6 have weights of 8⁻¹, 8⁻², 8⁻³ respectively. **Mathematically**, we can write it as $1457.236 = (1 \times 8^3) + (4 \times 8^2) + (5 \times 8^1) + (7 \times 8^0) + (2 \times 8^{-1}) + (3 \times 8^{-2}) + (6 \times 8^{-3})$

Mathematically, we can write it as for hexadecimal 1A05.2C4 = $(1 \times 16^3) + (10 \times 16^2) + (0 \times 16^1) + (5 \times 16^0) + (2 \times 16^{-1}) + (12 \times 16^{-2}) + (4 \times 16^{-3})$

Decimal to Binary Conversion

Example

Consider the **decimal number 58.25**. Here, the integer part is 58 and fractional part is 0.25. **Step 1** – Division of 58 and successive quotients with base 2.

Operation	Quotient	Remainder
58/2	29	0 LSB
29/2	14	1
14/2	7	0
7/2	3	1
3/2	1	1
1/2	0	1 MSB

 \Rightarrow 58 ₁₀ = 111010 ₂

Step 2 – Multiplication of 0.25 and successive fractions with base 2.

Operation	Result	Carry
0.25 x 2	0.5	0
0.5 x 2	1.0	1
-	0.0	-

Therefore, the **binary equivalent** of decimal number 58.25 is 111010.01.

Decimal to Octal Conversion

Example

Consider the **decimal number 58.25**. Here, the integer part is 58 and fractional part is 0.25.

Step 1 – Division of 58 and successive quotients with base 8.

Operation	Quotient	Remainder
58/8	7	2
7/8	0	7

 \Rightarrow 58 ₁₀ = 72 ₈

Step 2 – Multiplication of 0.25 and successive fractions with base 8.

Operation	Result	Carry
0.25 x 8	2.00	2
-	0.00	-

 \Rightarrow .25 ₁₀ = .2 ₈

Therefore, the **octal equivalent** of decimal number 58.25 is 72.2.

Decimal to Hexa-Decimal Conversion

Example

Consider the **decimal number 58.25**. Here, the integer part is 58 and decimal part is 0.25. **Step 1** – Division of 58 and successive quotients with base 16.

Operation	Quotient	Remainder
58/16	3	10=A
3/16	0	3

$$\Rightarrow$$
 58 ₁₀ = 3A ₁₆

Step 2 – Multiplication of 0.25 and successive fractions with base 16.

Operation	Result	Carry
0.25 x 16	4.00	4
-	0.00	-

 \Rightarrow .25 $_{\rm 10}$ = .4 $_{\rm 16}$

Therefore, the Hexa-decimal equivalent of decimal number 58.25 is 3A.4.

Binary Number to other Bases Conversion

Binary to Decimal Conversion

Example

Consider the **binary number 1101.11**.

Mathematically, we can write it as $1101.11_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2})$ $\Rightarrow 1101.11_2 = 8 + 4 + 0 + 1 + 0.5 + 0.25 = 13.75$

 $\Rightarrow 1101.11_{2}^{2} = 13.75_{10}$

Binary to Octal Conversion

Example

Consider the **binary number 101110.01101**.

Step 1 – Make the groups of 3 bits on both sides of binary point. 101 110.011 01 Here, on right side of binary point, the last group is having only 2 bits. So, include one zero on extreme side in order to make it as group of 3 bits. \Rightarrow 101 110.011 010 **Step 2** – Write the octal digits corresponding to each group of 3 bits. \Rightarrow 101110.011010 ₂ = 56.32₈

Any Query????

Thank you.....

Introduction to Digital circuits and Number systems / 19EC306/ Digital circuits/Mr.S.HARIBABU/ECE/SNSCE