

Functional units – Basic operational concepts – Bus Structures – Performance – Memory locations and addresses – Memory operations – Instruction and Instruction sequencing — Addressing modes – Assembly language – Case study: RISC and CISC Architecture.

Recall the prior Knowledge

Computer ?

Dr.B.Anuradha / ASP / CSD/ SEM 2 / COA

18-08-2022

imp

circuit^p redesigr

changingul changingul

registers

semulation

validations designers debuggers abstract

Why to study computer Architecture?

Structure an internal component of a computer

Program to realize the logics

Runs more efficiently on a real time machine

Introduction

Architecture

Computer

Computer

Introduction

Architecture

Definition

- Concerned with the structure and behavior of the various functional modules computer and how they interact to provide the processing needs of the user.
- Refers to the operational units and their interconnections
- Computer is a fast electronic calculating machine which accepts digital input, processes it according to the internally stored instructions (Programs) and produces the result on the output device.

Language Conversion

High-level language program (in C)

```
swap(int v[], int k)
(int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}

Compiler
```

```
Assembly
                   swap:
language
                         multi $2, $5.4
                               $2. $4.52
program
                         add
                               $15. 0($2)
(for MIPS)
                               $16. 4($2)
                               $16, 0($2)
                         SW
                               $15. 4($2)
                         jr
                               $31
                     Assembler
Binary machine
              00000000101000100000000100011000
language
              0000000010000010000100000100001
program
              1000110111100010000000000000000000
(for MIPS)
              1000111000010010000000000000000100
```

1010110111110001000000000000000100

High-level language program (in C)

Types of Computer

Based On Size

- √ Super
- ✓ Mainframe
- ✓ Mini
- ✓ Micro
 - Desktop
 - Laptop
 - Palmtop

Based On Mechanism

- ✓ Analog
- ✓ Digital
- ✓ Hybrid

Based On Purpose

- ✓ General Purpose
- ✓ Special Purpose

Computer Types

Mainframe Computer

- high capacity and costly computer
- largely used by big organizations where many people can use it simultaneously.

Super Computer

- fastest and also very expensive.
- can solve up to ten trillion individual calculations per second.

Workstation Computer

- high-end and expensive one.
- It is exclusively made for complex work purpose.

Computer Types

lainframe omputer

many

uper omputer

/orkstatic omputer

Personal Computer

k purpose.

culations

Personal Computer (PC)

It is a low capacity computer developed for single users.

Apple Macintosh (Mac)

It is a sort of personal computer manufactured by Apple company.

Laptop computer (notebook)

It is a handy computer that can be easily carried anywhere.

Tablet and Smartphone

Modern technology has advanced further. It has helped develop computers that are pocket-friendly.

Personal Computer (DC)

It is a low cap

Apple Macin

It is a sort of p

Laptop comp

It is a handy c

Tablet and S

Smartphone

У.

Modern technology has advanced further. It has helped develop computers that are pocket-friendly.

Generations of computers	Generations timeline	Evolving hardware
First generation	1940s-1950s	Vacuum tube based
Second generation	1950s-1960s	Transistor based
Third generation	1960s-1970s	Integrated circuit based
Fourth generation	1970s-present	Microprocessor based
Fifth generation	The present and the future	Artificial intelligence based

Block diagram of Computer

Functional Unit

Basic Operational Concepts

Instruction consists of 2 parts

Example

ADD LOCA, RO

Load LOCA, R1 Add R1, R0

Basic Operational Concepts

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU