

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE NAME: 19IT301 COMPUTER ORGANIZATION

AND ARCHITECTURE

II YEAR/ III SEM

Unit 1 : BASIC STRUCTURE OF COMPUTERS Topic 5:

Instruction and Instruction Sequencing

SNSCE / IT / III Sem / Vaishnavee AP-IT

"Must-Perform" Operations

- Data transfers between the memory and the processor lacksquareregisters
- Arithmetic and logic operations on data
- Program sequencing and control
- I/O transfers \bullet

Register Transfer Notation

- Identify a location by a symbolic name standing for its hardware binary address (LOC, R0, DATAIN, ...)
- · Contents of a location are denoted by placing square brackets around the name of the location R1←[LOC] R3 ←[R1]+[R2]
- This type of notation is Register Transfer Notation (RTN)

- Assembly language(symbolic machine code) takes complete control over the system and its resources.
- Represent machine instructions and programs.
- Move LOC, R1
- Add R1, R2, R3

Instruction Formats

- Three-Address Instructions lacksquare
 - Format: Operation Source1, Source2, Destination
 - \circ ADD R2, R3, R1 R1 \leftarrow [R2] + [R3]
- Two-Address Instructions • Format: Operation Source, Destination R1 ← [R1] + [R2] \circ ADD R2, R1
- One-Address Instructions
 - \circ ADD M $AC \leftarrow [AC] + [M]$
 - \circ Load A
 - o Store A

SNSCE / IT / III Sem / Vaishnavee AP-IT

Instruction Formats

Example: Evaluate C = A+B using processor registers,

А,	R _i
В,	R _i
R _{i.}	Ŕ _i
R _j ,	Ć
	A, B, R _{i,} R _j ,

9/30/2023

Instruction Execution and Straight-Line Sequencing

sequencing

SNSCE / IT / III Sem / Vaishnavee AP-IT

9/30/2023

Assumptions:

- One memory operand per instruction
- 32-bit word length
- Memory is byte addressable
- Full memory address can be directly specified in a single-word instruction

Two-phase procedure -Instruction fetch -Instruction execute

SNSCE / IT / III Sem / Vaishnavee AP-IT

Condition Codes

- The processor keeps track of information about the results of various operations.
- This is accomplished by recording the required information in individual bits, • called Condition Code Flags.
- Flags are grouped together in a special processor-register called the **condition** lacksquarecode register (or status register).
 - 4 commonly used flags
 - \checkmark N (negative)
 - \checkmark Z (zero)
 - \checkmark V (overflow)
 - ✓ C (carry)

SNSCE / IT / III Sem / Vaishnavee AP-IT

Conditional Branch Instructions

• Example:

- A: 11110000
- B: 00010100

SNSCE / IT / III Sem / Vaishnavee AP-IT

- 1111000

 - 110
 - $\mathbf{Z} = \mathbf{0}$

10/1

Thank You

<mark>9/30/20</mark>23

