Grubler's criterion for plane mechanisms

- A little consideration will show that a plane mechanism with a movability of 1 and only single degree of freedom joints i.e. full joints can not have odd number of links. Substituting $n=1$ and $h=0$ in Kutzbach's equation, we have

$$
1=3(\mid-1)-2 j \text { or } 3 /-2 j-4=0
$$

- This equation is known as the Grubler's criterion for plane mechanisms with constrained motion.
- The simplest possible mechanisms of this type are a four bar mechanism and a slider-crank mechanism in which $1=4$ and $\mathrm{j}=4$.

Degree of Freedom Paradoxes

- Gruebler's equation does not account for link geometry, in rare instance it can lead to misleading result
(a) The E-quintet with DOF $=0$ -agrees with Gruebler equation

Both have 5 links and 6 joints

(b) The E-quintet with DOF $=1$
-disagrees with Gruebler equation due to unique geometry

Degree of Freedom Paradoxes (contd.)

The "E-quintet" is an example in which If three binary links happen to have equal length, the joints of a middle link do not constrain the mechanism any more than the outer links. The equation predicts $\operatorname{DOF}=0$, but the mechanism has DOF $=1$.

$$
M=3(L-1)-2 J_{1}-J_{2}
$$

Link Classification

- Ground or fixed Link: fixed w.r.t. reference frame
- Input [Driving] Link : Link where by motion and force are imparted to a mechanism
- Output [Driven] Link : Link from which required motion and forces are obtained

Link Classification

Link Classification (contd.)

- Crank Link: pivoted to ground, makes complete revolutions; i.e. Link that rotates completely about a fixed axis
- Rocker Link: pivoted to ground, has oscillatory (back \& forth) motion
- Coupler Link: aka connecting rod, is not directly connected to the fixed link or frame, it in effect connects inputs \& outputs

Four Bar Mechanism

- Four bar mechanism consists of four rigid links connected in a loop by four one degree of freedom joints.
- A joint may be either a revolute, that is a hinged joint, denoted by R, or a prismatic, as sliding joint, denoted by P .

Four Bar Mechanism (contd.)

A link that makes complete revolution is called crank $\left(r_{2}\right)$, the link opposite to the fixed link is the coupler $\left(r_{3}\right)$ and forth link $\left(r_{4}\right)$ is a rocker if oscillates or another crank if rotates.

Four Bar Mechanism (contd.)

Brake of a Wheelchair

Four Bar Mechanism (contd.)

Backhoe Excavator

Mechanism Classification

- Crank-rocker mechanism: In a four bar linkage, if the shorter side link revolves and the other one rocks (i.e., oscillates), it is called a crank-rocker mechanism.
- Double-crank mechanism: In a four bar linkage, if both of the side links revolve, it is called a doublecrank mechanism.
- Double-rocker mechanism: In a four bar linkage, if both of the side links rock, it is called a doublerocker mechanism.

